已知
sinα
sin
α
2
=
8
5
,求cosα.
考點(diǎn):二倍角的正弦,同角三角函數(shù)基本關(guān)系的運(yùn)用
專題:三角函數(shù)的求值
分析:由條件利用二倍角的正弦公式求得cos
α
2
的值,再利用二倍角的余弦公式求得cosα=2cos2
α
2
-1的值.
解答: 解:∵已知
sinα
sin
α
2
=2cos
α
2
=
8
5
,∴cos
α
2
=
4
5
,∴cosα=2cos2
α
2
-1=2×
16
25
-1=
7
25
點(diǎn)評(píng):本題主要考查二倍角公式的應(yīng)用,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的左頂點(diǎn)A(-2,0),過右焦點(diǎn)F且垂直于長軸的弦長為3.
(Ⅰ)求橢圓C的方程;
(Ⅱ)已知直線y=kx+m(k<0,m>b>0)與y軸交于點(diǎn)P,與x軸交于點(diǎn)Q,與橢圓C交于M,N兩點(diǎn),若
1
|PM|
+
1
|PN|
=
3
|PQ|
.求證:直線y=kx+m過定點(diǎn),并求出這個(gè)定點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等比數(shù)列{an}的前n項(xiàng)和Tn=(
1
3
)n
-a,數(shù)列{bn}(bn>0)的首項(xiàng)為b1=a,且其前n項(xiàng)和Sn滿足Sn+Sn-1=1+2
SnSn-1
(n≥2,n∈N*
(Ⅰ)求數(shù)列{an}和{bn}的通項(xiàng)公式;
(Ⅱ)若數(shù)列{
1
bnbn+1
}
的前n項(xiàng)和為Pn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=lnx-ax,
(Ⅰ)當(dāng)a>0時(shí),求函數(shù)f(x)在區(qū)間[1,e]內(nèi)的最大值;
(Ⅱ)當(dāng)a=-1時(shí),方程2mf(x)=x2有唯一實(shí)數(shù)解,求正數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

等比數(shù)列{an}中,a1,a2,a3分別是下表一、二、三行中的某一個(gè)數(shù),且a1,a2,a3中任何兩個(gè)數(shù)不在下表同一列,且a1<a2<a3,
一列 二列 三列
第一行 2 3 12
第二行 4 6 14
第三行 8 9 18
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若數(shù)列{bn}滿足bn=an+lnan,求數(shù)列{bn}前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項(xiàng)和為Sn,且a1=0,對(duì)任意n∈N*,都有nan+1=Sn+n(n+1).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若數(shù)列{bn}滿足an+log2n=log2bn,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)命題p:函數(shù)y=ax在R上單調(diào)遞增,命題q:不等式x2-ax+1>0對(duì)一切x∈R恒成立,若“?p”為真,“p∨q”為真,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的通項(xiàng)公式為an=
1-3n,n為偶數(shù)
2n-1,n為奇數(shù)
,則其前10項(xiàng)和為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)(2-x)5=a0+a1x+a2x2…a5x5,那么
a0+a2+a4
a1+a3
的值為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案