A. | -2 | B. | 0 | C. | 2 | D. | 4 |
分析 求出f′(x)=3x2-3,由f′(x)=3x2-3=0,得x=±1,由x=-1∉[0,2],x=1∈[0,2],求出f(0)=a,f(1)=-2+a,f(2)=2+a,從而得到m=2+a,n=-2+a,由此能求出m-n的值.
解答 解:∵函數f(x)=x3-3x+a,
∴f′(x)=3x2-3,
由f′(x)=3x2-3=0,得x=±1,
x=-1∉[0,2],x=1∈[0,2],
∵f(0)=a,f(1)=1-3+a=-2+a,f(2)=8-6+a=2+a,
函數f(x)=x3-3x+a在區(qū)間[0,2]上有最大值m和最小值n,
∴m=2+a,n=-2+a,
∴m-n=4.
故選:D.
點評 本題考查函數的最大值與最小值之差的求法,考查導數、最值等基礎知識,考查推理論證能力、運算求解能力,考查化歸與轉化思想、函數與方程思想,是中檔題.
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 2 | B. | 4 | C. | $4\sqrt{3}$ | D. | $2\sqrt{3}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | f(x)=3sin(x+$\frac{π}{4}$) | B. | f(x)=3sin(2x$+\frac{π}{4}$) | C. | f(x)=3sin(x$+\frac{3π}{4}$) | D. | f(x)=3sin(2x$+\frac{3π}{4}$) |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com