精英家教網 > 高中數學 > 題目詳情

【題目】某種平面分形如圖所示,一級分形圖是由一點出發(fā)的三條線段,長度均為1,兩兩 夾角為120°; 二級分形圖是在一級分形圖的每條線段的末端出發(fā)再生成兩條長度為原來 的線段,且這兩條線段與原線段兩兩夾角為120°;…;依此規(guī)律得到n級分形圖,則n級分形圖中所有線段的長度之和為.

【答案】9﹣9?
【解析】解:設n級分形圖中所有線段的長度之和為an , 依題意a1=3,a2=3+2×3× =3+2, a3=3+2×3× +2×2×3× =3+2+ ,
a4=3+2+ +
…,
它們構成一個首項為3,公比為 的等比的和,
∴sn= =9﹣9
所以答案是:9﹣9
【考點精析】通過靈活運用歸納推理,掌握根據一類事物的部分對象具有某種性質,退出這類事物的所有對象都具有這種性質的推理,叫做歸納推理即可以解答此題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知拋物線C:y2=2px(p>0)的焦點為F并且經過點A(1,﹣2).
(1)求拋物線C的方程;
(2)過F作傾斜角為45°的直線l,交拋物線C于M,N兩點,O為坐標原點,求△OMN的面積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】給出一個如圖所示的程序框圖,若要使輸入的x值與輸出的y值相等,則這樣的x值的個數是(

A.5
B.4
C.3
D.2

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知{an}是等差數列,{bn}是等比數列,Sn為數列{an}的前n項和,a1=b1=1,且b3S3=36,b2S2=8(n∈N+).
(1)求an和bn;
(2)若an<an+1 , 求數列 的前n項和Tn

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】下面四個命題: ①若直線a,b異面,b,c異面,則a,c異面;
②若直線a,b相交,b,c相交,則a,c相交;
③若a∥b,則a,b與c所成的角相等;
④若a⊥b,b⊥c,則a∥c.
其中真命題的個數為(
A.4
B.3
C.2
D.1

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】甲乙兩種商品在過去一段時間內的價格走勢如圖所示,假設某人持有資金120萬元,他可以在t1至t4的任意時刻買賣這兩種商品,且買賣能夠立即成交(其他費用忽略不計),那么他持有的資金最多可變?yōu)椋?/span>
A.120萬元
B.160萬元
C.220萬元
D.240萬元

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知指數函數y=g(x)的圖象經過點(2,4),且定義域為R的函數f(x)= 是奇函數.
(1)求f(x)的解析式,判斷f(x)在定義域R上的單調性,并給予證明;
(2)若關于x的方程f(x)=m在[﹣1,0)上有解,求f( )的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知拋物線C:y2=2px上一點 到焦點F距離為1,
(1)求拋物線C的方程;
(2)直線l過點(0,2)與拋物線交于M,N兩點,若OM⊥ON,求直線的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知p:方程x2+mx+1=0有兩個不等的負實根,q:方程4x2+4(m﹣2)x+1=0無實根.若“p或q”為真,“p且q”為假.求實數m的取值范圍.

查看答案和解析>>

同步練習冊答案