【題目】

如圖,在四面體中,分別是棱的中點.

)求證:平面;

)求證:四邊形為矩形;

)是否存在點,到四面體六條棱的中點 的距離相等?說明理由.

【答案】

【解析】

:證明:()因為D,E分別為APAC的中點,所以DE//PC.又因為DE平面BCP,所以DE//平面BCP

)因為D,EF,G分別為AP,ACBC,PB的中點,

所以DE//PC//FG,DG//AB//EF.所以四邊形DEFG為平行四邊形,

又因為PC⊥AB,所以DE⊥DG,所以四邊形DEFG為矩形.

)存在點Q滿足條件,理由如下:連接DF,EG,設QEG的中點

由()知,DF∩EG=Q,且QD=QE=QF=QG=EG.

分別取PCAB的中點M,N,連接MEEN,NG,MGMN

與()同理,可證四邊形MENG為矩形,其對角線點為EG的中點Q,

QM=QN=EG,所以Q為滿足條件的點.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)的最大值為.

(1)若關于的方程的兩個實數(shù)根為,求證:

(2)當時,證明函數(shù)在函數(shù)的最小零點處取得極小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示的是一質點做簡諧運動的圖象,則下列結論正確的是(

A.該質點的運動周期為0.7s

B.該質點的振幅為5

C.該質點在0.1s0.5s時運動速度為零

D.該質點的運動周期為0.8s

E.該質點在0.3s0.7s時運動速度為零

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)).

(1)求的定義域;

(2)討論函數(shù)的單調性.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的左右焦點與其短軸的一個端點是正三角形的三個頂點,點在橢圓上,直線與橢圓交于兩點,與軸、軸分別相交于點和點,且,點是點關于軸的對稱點,的延長線交橢圓于點,過點、分別做軸的垂線,垂足分別為、.

(1)求橢圓的方程;

(2)是否存在直線,使得點平分線段,?若存在,求出直線的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某企業(yè)甲,乙兩個研發(fā)小組,他們研發(fā)新產(chǎn)品成功的概率分別為,現(xiàn)安排甲組研發(fā)新產(chǎn)品,乙組研發(fā)新產(chǎn)品.設甲,乙兩組的研發(fā)是相互獨立的.

(1)求至少有一種新產(chǎn)品研發(fā)成功的概率;

(2)若新產(chǎn)品研發(fā)成功,預計企業(yè)可獲得萬元,若新產(chǎn)品研發(fā)成功,預計企業(yè)可獲得利潤萬元,求該企業(yè)可獲得利潤的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】判斷下列命題的真假.

1)若直線上有無數(shù)個點不在平面內,則;

2)若直線與平面平行,則與平面內的任意一條直線都平行;

3)若直線與平面平行,則與平面內的任意一條直線都沒有公共點;

4)如果兩條平行直線中的一條與一個平面平行,則另一條直線也與這個平面平行.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(1)當時,求函數(shù)的圖象在處的切線方程;

(2)若函數(shù)在定義域上為單調增函數(shù)。

①求的最大整數(shù)值;

②證明:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知實數(shù),定義域為的函數(shù)是偶函數(shù),其中為自然對數(shù)的底數(shù).

(Ⅰ)求實數(shù)值;

(Ⅱ)判斷該函數(shù)上的單調性并用定義證明;

(Ⅲ)是否存在實數(shù),使得對任意的,不等式恒成立.若存在,求出實數(shù)的取值范圍;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案