【題目】判斷下列命題的真假.

1)若直線上有無數(shù)個點不在平面內(nèi),則;

2)若直線與平面平行,則與平面內(nèi)的任意一條直線都平行;

3)若直線與平面平行,則與平面內(nèi)的任意一條直線都沒有公共點;

4)如果兩條平行直線中的一條與一個平面平行,則另一條直線也與這個平面平行.

【答案】1)假命題;(2)假命題;(3)真命題;(4)假命題.

【解析】

利用空間直線平面的平行位置關(guān)系逐一分析判斷得解.

1)若直線上有無數(shù)個點不在平面內(nèi),則或者相交,所以該命題是假命題;

2)若直線與平面平行,則與平面內(nèi)的直線平行或者異面,所以該命題是假命題;

3)若直線與平面平行,則與平面沒有公共點,則與平面內(nèi)的任意一條直線都沒有公共點,所以該命題是真命題;

4)如果兩條平行直線中的一條與一個平面平行,則另一條直線與這個平面平行或者在平面內(nèi),所以該命題是假命題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fx)=xex

1)求函數(shù)fx)的極值.

2)若fx)﹣lnxmx1恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】以直角坐標系的原點O為極點,x軸的正半軸為極軸建立極坐標系,曲線C的極坐標方程為ρsin2α4cosα=0.已知直線l的參數(shù)方程為為參數(shù)),點M的直角坐標為.

1)求直線l和曲線C的普通方程;

2)設(shè)直線l與曲線C交于A,B兩點,求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】

如圖,在四面體中,分別是棱的中點.

)求證:平面

)求證:四邊形為矩形;

)是否存在點,到四面體六條棱的中點 的距離相等?說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方體中,M,N,E,F(xiàn)分別是棱A1B1,A1D1,B1C1,C1D1的中點,求證:平面AMN∥平面EFDB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某射擊運動員在一次射擊中射中10環(huán)、9環(huán)、8環(huán)、7環(huán)、7環(huán)以下的概率分別為0.24,0.28,0.19,0.16,0.13.計算這名射擊運動員在一次射擊中:

1)射中10環(huán)或9環(huán)的概率;

2)射中8環(huán)以下的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某網(wǎng)站登錄密碼由四位數(shù)字組成,某同學(xué)將四個數(shù)字0,3,2,5,編排了一個順序作為密碼.由于長時間未登錄該網(wǎng)站,他忘記了密碼.若登錄時隨機輸入由0,3,2,5組成的一個密碼,則該同學(xué)不能順利登錄的概率是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(12分)

已知函數(shù).

(1)當(dāng)時,判斷函數(shù)的單調(diào)性;

(2)若函數(shù)處取得極大值,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司為了適應(yīng)市場需求對產(chǎn)品結(jié)構(gòu)做了重大調(diào)整,調(diào)整后初期利潤增長迅速,之后增長越來越慢,若要建立恰當(dāng)?shù)暮瘮?shù)模型來反映該公司調(diào)整后利潤與時間的關(guān)系,可選用

A.一次函數(shù)B.二次函數(shù)

C.指數(shù)型函數(shù)D.對數(shù)型函數(shù)

查看答案和解析>>

同步練習(xí)冊答案