3.已知點M(-1,0)和N(-1,0),若某直線上存在點p,使得|PM|+|PN|=4,則稱該直線為“橢型直線”.現(xiàn)有下列直線:
①x-2y+6=0
②x-y=0
③2x-y+1=0
④x+y-3=0
其中是“橢型直線”的是( 。
A.①③B.①②C.②③D.③④

分析 由題意可知,點P的軌跡是以M,N為焦點的橢圓,把直線方程分別代入橢圓方程看是否有解即可判斷出結(jié)論.

解答 解:由橢圓的定義可知,點P的軌跡是以M,N為焦點的橢圓,其方程$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$,
對于①,把x-2y+6=0代入$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$,并整理得16y2-68y+96=0,由△=682-4×16×(96)=-1520<0,
則x-2y+6=0不是橢型直線”;
對于②,把y=x代入$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$,解得:x2=$\frac{12}{7}$成立,
∴x-y=0是“橢型直線”;
對于③,把2x-y+1=0代入$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$,19x2+16x-8=0,由△=(16)2-4×19×(-8)>0,
則2x-y+1=0是“橢型直線”
對于④把x+y-3=0代入$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$,7x2-24x+24=0,△=(-24)2-4×7×24<0,
則y=-x+3不是“橢型直線”;
故②③是“橢型直線”,
故選C.

點評 本題是新定義題,考查了橢圓的定義及標(biāo)準(zhǔn)方程,考查了數(shù)學(xué)轉(zhuǎn)化思想方法及方程思想方法,解答此題的關(guān)鍵是把問題轉(zhuǎn)化為判斷直線方程與橢圓方程聯(lián)立的方程組是否有解,屬中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.如圖,在梯形ABCD中,AB∥DC,AD=AB=BC=1,$∠ADC=\frac{π}{3}$,平面ACFE⊥平面ABCD,四邊形ACFE是矩形,AE=1,點M在線段EF上.
(1)當(dāng)$\frac{FM}{EM}$為何值時,AM∥平面BDF?證明你的結(jié)論;
(2)求二面角B-EF-D的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知e是自然對數(shù)的底數(shù),f(x)=mex,g(x)=x+3,φ(x)=f(x)+g(x),h(x)=f(x)-g(x-2)-2017.
(1)設(shè)m=1,求h(x)的極值;
(2)設(shè)m<-e2,求證:函數(shù)φ(x)沒有零點;
(3)若m≠0,x>0,設(shè)$F(x)=\frac{m}{f(x)}+\frac{4x+4}{g(x)-1}$,求證:F(x)>3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.若函數(shù)$f(x)=\sqrt{2}cos({ωx+\frac{π}{4}})$在x=0處的切線方程為y=-3x+1,則ω=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.根據(jù)“2015年國民經(jīng)濟(jì)和社會發(fā)展統(tǒng)計公報”中公布的數(shù)據(jù),從2011 年到2015 年,我國的第三產(chǎn)業(yè)在GDP中的比重如下:
年份20112012201320142015
年份代碼x12345
第三產(chǎn)業(yè)比重y(%)44.345.546.948.150.5
(1)在所給坐標(biāo)系中作出數(shù)據(jù)對應(yīng)的散點圖;
(2)建立第三產(chǎn)業(yè)在GDP中的比重y關(guān)于年份代碼x的回歸方程;
(3)按照當(dāng)前的變化趨勢,預(yù)測2017 年我國第三產(chǎn)業(yè)在GDP中的比重.
附注:回歸直線方程$\widehaty=\widehata+\widehatbx$中的斜率和截距的最小二乘估計公式分別為:$\widehatb=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_i^2}-n{{(\overline x)}^2}}}=\frac{{\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y})}}{{\sum_{i=1}^n{{{({x_i}-\overline x)}^2}}}}$,$\widehata=\overline y-\widehatb\overline x$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知矩形ABCD,AB=4,AD=1,點E為DC的中點,則$\overrightarrow{AE}•\overrightarrow{BE}$=-3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知$\overrightarrow{m}$=($\sqrt{3}$sinωx,cosωx),$\overrightarrow{n}$=(cosωx,-cosωx)(ω>0,x∈R),f(x)=$\overrightarrow{m}$•$\overrightarrow{n}$-$\frac{1}{2}$且f(x)的圖象上相鄰兩條對稱軸之間的距離為$\frac{π}{2}$.
(1)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)若△ABC中內(nèi)角A,B,C的對邊分別為a,b,c且b=$\sqrt{7}$,f(B)=0,sinA=3sinC,求a,c的值及△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.命題:“$?{x_0}>0,{2^{x_0}}>1$”的否定是?x>0,2x≤1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.若復(fù)數(shù)z滿足$(1+i)z=|{\sqrt{3}+i}|$,則在復(fù)平面內(nèi),$\overline z$對應(yīng)的點位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

同步練習(xí)冊答案