分析 求出原函數(shù)的導函數(shù).
(1)對a分類可得f'(x)、f(x)的變化情況表,利用表格可得函數(shù)f(x)的單調(diào)區(qū)間;
(2)求出f(1)=$-\frac{1}{2}-a$,可得a>0時,f(1)<0,此時f(x)≥0對定義域內(nèi)的任意x不是恒成立;a≤0時,求出函數(shù)f(x)在區(qū)間(0,+∞)的極小值,也是最小值,由最小值大于等于0求得a的取值范圍.
解答 解:$f'(x)=\frac{a}{x}+x-({1+a})=\frac{{{x^2}-({1+a})x+a}}{x}=\frac{{({x-1})({x-a})}}{x}$,
(1)①當0<a<1時,f'(x)、f(x)的變化情況如下表:
x | (0,a) | a | (a,1) | 1 | (1,+∞) |
f'(x) | + | 0 | - | 0 | + |
f(x) | 單調(diào)遞增 | 極大值 | 單調(diào)遞減 | 極小值 | 單調(diào)遞增 |
x | (0,1) | 1 | (1,a) | a | (a,+∞) |
f'(x) | + | 0 | - | 0 | + |
f(x) | 單調(diào)遞增 | 極大值 | 單調(diào)遞減 | 極小值 | 單調(diào)遞增 |
點評 本題考查利用導數(shù)研究函數(shù)的單調(diào)性,考查了利用導數(shù)求函數(shù)在閉區(qū)間上的最值,體現(xiàn)了分類討論的數(shù)學思想方法,是中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 5 | B. | 10 | C. | 2$\sqrt{6}$ | D. | 4$\sqrt{6}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | ($\frac{2kπ}{3}-\frac{π}{9}$,$\frac{2kπ}{3}+\frac{2π}{9}$),k∈Z | B. | ($\frac{2kπ}{3}$-$\frac{4π}{9}$,$\frac{2kπ}{3}$-$\frac{π}{9}$),k∈Z | ||
C. | ($\frac{2kπ}{3}$+$\frac{π}{18}$,$\frac{2kπ}{3}$+$\frac{7π}{18}$),k∈Z | D. | ($\frac{2kπ}{3}$-$\frac{7π}{18}$,$\frac{2kπ}{3}-\frac{π}{18}$),k∈Z |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com