【題目】在“互聯(lián)網(wǎng)+”時代的今天,移動互聯(lián)快速發(fā)展,智能手機(Smartphone)技術(shù)不斷成熟,尤其在5G領(lǐng)域,華為更以件專利數(shù)排名世界第一,打破了以往由美、英、日壟斷的前三位置,再次榮耀世界,而華為的價格卻不斷下降,遠低于蘋果;智能手機成為了生活中必不可少的工具,學(xué)生是對新事物和新潮流反應(yīng)最快的一個群體之一,越來越多的學(xué)生在學(xué)校里使用手機,為了解手機在學(xué)生中的使用情況,對某學(xué)校高二年級名同學(xué)使用手機的情況進行調(diào)查,針對調(diào)查中獲得的“每天平均使用手機進行娛樂活動的時間”進行分組整理得到如下的數(shù)據(jù):
使用時間(小時) | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
所占比例 | 4% | 10% | 31% | 16% | 12% | 2% |
(1)求表中的值;
(2)從該學(xué)校隨機選取一名同學(xué),能否根據(jù)題目中所給信息估計出這名學(xué)生每天平均使用手機進行娛樂活動小于小時的概率?若能,請算出這個概率;若不能,請說明理由;
(3)若從使用手機小時和小時的兩組中任取兩人,調(diào)查問卷,看看他們對使用手機進行娛樂活動的看法,求這人都使用小時的概率.
【答案】(1)(2)抽取到高二的學(xué)生能估計,概率為,抽取到高一高三的學(xué)生不能估計(3)
【解析】
由已知易知;
分情況討論,當(dāng)抽到的是高二年級時可以估計,若抽到高一、高三的同學(xué)則不能估計;
抽取6人中編號,寫出所有基本事件,找出滿足事件A的結(jié)果數(shù),求解.
由題設(shè)知,.
樣本是從高二年級抽取的,
根據(jù)抽取的樣本只能估計該校高二年級學(xué)生每天使用手機進行娛樂活動的平均時間,不能估計全校學(xué)生情況.
若抽取的同學(xué)是高二年級的學(xué)生,
則可以估計這名同學(xué)每天平均使用手機小于小時的概率大約為:
;
若抽到高一、高三的同學(xué)則不能估計;
由題設(shè)知,使用1小時的人共有:人,設(shè)為A,B,C,D,
使用7小時的共有人,設(shè)為a,b,
從中任選2人有:AB,AC,AD,Aa,Ab,BC,BD,Ba,Bb,CD,Ca,Cb,Da,Db,ab共15種情況,其中,這2人都使用7小時的只有ab,
所求概率為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列中,,前項和為,若對任意的,均有(是常數(shù),且)成立,則稱數(shù)列為“數(shù)列”.
(1)若數(shù)列為“數(shù)列”,求數(shù)列的前項和;
(2)若數(shù)列為“數(shù)列”,且為整數(shù),試問:是否存在數(shù)列,使得對任意,成立?如果存在,求出這樣數(shù)列的的所有可能值,如果不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在極坐標系中,曲線C的極坐標方程為.以極點為原點,極軸為x軸的正半軸建立平面直角坐標系,直線l的參數(shù)方程為 (t為參數(shù))
(1)若,求曲線C的直角坐標方程以及直線l的極坐標方程;
(2)設(shè)點,曲線C與直線 交于A、B兩點,求的最小值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某大學(xué)志愿者協(xié)會有6名男同學(xué),4名女同學(xué).在這10名同學(xué)中,3名同學(xué)來自數(shù)學(xué)學(xué)院,其余7名同學(xué)來自物理、化學(xué)等其他互不相同的七個學(xué)院.現(xiàn)從這10名同學(xué)中隨機選取3名同學(xué),到希望小學(xué)進行支教活動(每位同學(xué)被選到的可能性相同).
(1)求選出的3名同學(xué)是來自互不相同學(xué)院的概率;
(2)設(shè)為選出的3名同學(xué)中女同學(xué)的人數(shù),求隨機變量的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一個小商店從一家食品有限公司購進10袋白糖,每袋白糖的標準重量是500g,為了了解這些白糖的實際重量,稱量出各袋白糖的實際重量(單位:g)如下:503,502,496,499,491,498,506,504,501,510
(1)求這10袋白糖的平均重量和標準差s;
(2)從這10袋中任取2袋白糖,那么其中恰有一袋的重量不在(s,s)的概率是多少?(附:5.08,16.06,5.09,16.09)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系中,直線l的參數(shù)方程是(t為參數(shù)),以坐標原點O為極點,x軸的正半軸為極軸建立極坐標系,曲線C的極坐標方程是.
(1)證明:直線l與曲線C相切;
(2)設(shè)直線l與x軸、y軸分別交于點A,B,點P是曲線C上任意一點,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某快遞公司在某市的貨物轉(zhuǎn)運中心,擬引進智能機器人分揀系統(tǒng),以提高分揀效率和降低物流成本,已知購買臺機器人的總成本萬元.
(1)若使每臺機器人的平均成本最低,問應(yīng)買多少臺?
(2)現(xiàn)按(1)中的數(shù)量購買機器人,需要安排人將郵件放在機器人上,機器人將郵件送達指定落袋格口完成分揀,經(jīng)實驗知,每臺機器人的日平均分揀量(單位:件),已知傳統(tǒng)人工分揀每人每日的平均分揀量為1200件,問引進機器人后,日平均分揀量達最大值時,用人數(shù)量比引進機器人前的用人數(shù)量最多可減少多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的極大值為,其中為自然對數(shù)的底數(shù).
(1)求實數(shù)的值;
(2)若函數(shù),對任意,恒成立.
(i)求實數(shù)的取值范圍;
(ii)證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x2+tx+1(其中實數(shù)t>0).
(1)已知實數(shù)x1,x2∈[﹣1,1],且x1<x2.若t=3,試比較x1f(x1)+x2f(x2)與x1f(x2)+x2f(x1)的大小關(guān)系,并證明你的結(jié)論;
(2)記g(x),若存在非負實數(shù)x1,x2,…xn+1,使g(x1)+g(x2)+…+g(xn)=g(xn+1)(n∈N*)成立,且n的最大值為8,求實數(shù)t的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com