3.若圓臺上底半徑為1,下底半徑和高均為4,則圓臺的側(cè)面積為25π.

分析 先求出圓臺側(cè)面的母線長l,由此利用圓臺的側(cè)面積公式能求出結(jié)果.

解答 解:∵圓臺上底半徑為1,下底半徑和高均為4,
∴l(xiāng)=$\sqrt{(4-1)^{2}+{4}^{2}}$=5,
∴圓臺的側(cè)面積為S=π(1+4)×5=25π.
故答案為:25π.

點評 本題考查圓臺的側(cè)面積的求法,是基礎題,解題時要認真審題,注意圓臺性質(zhì)的合理運用.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

13.如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,底面ABCD是菱形,AB=2,∠BAD=60°
(1)若PA=AB,求PB與平面PDC所成角的正弦值;
(3)當平面PBC與平面PDC垂直時,求PA的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.設命題p:不等式|2x-1|<x+a的解集是{x|-$\frac{1}{3}$<x<3};命題q:不等式4x≥ax2+1的解集是∅,若“p或q”為真命題,試求實數(shù)a的值取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.已知$f(x)=\left\{\begin{array}{l}3{e^{x-1}},x<3\\{x^3},x≥3\end{array}\right.$,則f(f(1))的值等于27.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.命題A:點M的直角坐標是(0,1),命題B:點M的極坐標是(1,$\frac{π}{2}$),則命題A是命題B的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知函數(shù)f(x)=2sin(2x-$\frac{π}{3}$).
(1)求f(x)的單調(diào)遞增區(qū)間;
(2)求f(x)的最大值及取得最大值時相應的x的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.已知向量$\overrightarrow{a}$,$\overrightarrow$滿足,|$\overrightarrow{a}$|=1,|$\overrightarrow$|=$\sqrt{2}$,|$\overrightarrow{a}$-2$\overrightarrow$|=$\sqrt{5}$,則|$\overrightarrow{a}$+$\overrightarrow$|=$\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.已知雙曲線$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{5}$=1上一點P到左焦點F1的距離為10,則當PF1的中點N到坐標原點O的距離為( 。
A.3或7B.6或14C.3D.7

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.已知等差數(shù)列{an}的首項a1=1,公差d>0,且第2項、第5項、第14項分別是一個等比數(shù)列的第2項、第3項、第4項.
(1)求數(shù)列{an}的通項公式;
(2)設bn=$\frac{1}{n(an+3)}$ (n∈N+),Sn=b1+b2+…+bn,求Sn

查看答案和解析>>

同步練習冊答案