【題目】已知函數(shù),.
(1)討論的單調(diào)性;
(2)若不等式對任意恒成立,求a的取值范圍.
【答案】(1)當(dāng)時,在單調(diào)遞增,當(dāng)時,的增區(qū)間為,減區(qū)間為,當(dāng)時,的增區(qū)間為,減區(qū)間為;(2)
【解析】
(1)求出導(dǎo)函數(shù),分類討論分子二次函數(shù)的根的情況即可得解;
(2)結(jié)合(1)得出最大值,構(gòu)造函數(shù),結(jié)合單調(diào)性求解.
(1)
,
考慮,
當(dāng)時,,在單調(diào)遞增,
當(dāng)時,記的兩根,
結(jié)合可得:兩根屬于,
時,,
時,,
的增區(qū)間為,減區(qū)間為,
當(dāng)時,開口向下,結(jié)合可得:
時,,
時,,
的增區(qū)間為,減區(qū)間為,
綜上所述:當(dāng)時,在單調(diào)遞增,當(dāng)時,的增區(qū)間為,減區(qū)間為,當(dāng)時,的增區(qū)間為,減區(qū)間為;
(2)當(dāng)時,當(dāng)時,,
所以,
不滿足對任意恒成立,
當(dāng)時,結(jié)合(1),的增區(qū)間為,減區(qū)間為,
開口向下,結(jié)合可得:
是方程的根,所以,
所以,
由題
令,
,
易得時,,所以在單調(diào)遞增,且
,即,
所以,
,
所以.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)集合的元素均為實(shí)數(shù),若對任意,存在,,使得且,則稱元素個數(shù)最少的和為的“孿生集”;稱的“孿生集”的“孿生集”為的“2級孿生集”;稱的“2級孿生集”的“孿生集”為的“3級孿生集”,依此類推……
(1)設(shè),直接寫出集合的“孿生集”;
(2)設(shè)元素個數(shù)為的集合的“孿生集”分別為和,若使集合中元素個數(shù)最少且所有元素之和為2,證明:中所有元素之和為;
(3)若,請直接寫出的“級孿生集”的個數(shù),及所有“級孿生集”的并集的元素個數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】把參加某次鉛球投擲的同學(xué)的成績(單位:米)進(jìn)行整理,分成以下6個小組:[5.25,6.15),[6.15,7.05),[7.05,7.95),[7.95,8.85),[8.85,9.75),[9.75,10.65],并繪制出頻率分布直方圖,如圖所示是這個頻率分布直方圖的一部分.已知從左到右前5個小組的頻率分別為0.04,0.10,0.14,0.28,0.30,第6小組的頻數(shù)是7.規(guī)定:投擲成績不小于7.95米的為合格.
(1)求這次鉛球投擲成績合格的人數(shù);
(2)你認(rèn)為這次鉛球投擲的同學(xué)的成績的中位數(shù)在第幾組?請說明理由;
(3)若參加這次鉛球投擲的學(xué)生中,有5人的成績?yōu)閮?yōu)秀,現(xiàn)在要從成績優(yōu)秀的學(xué)生中,隨機(jī)選出2人參加相關(guān)部門組織的經(jīng)驗(yàn)交流會,已知a、b 兩位同學(xué)的成績均為優(yōu)秀,求a、b 兩位同學(xué)中至少有1人被選到的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若函數(shù)f(x)=﹣x﹣cos2x+m(sinx﹣cosx)在(﹣∞,+∞)上單調(diào)遞減,則m的取值范圍是____________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知橢圓的右頂點(diǎn)為,過點(diǎn)作直線與圓相切,與橢圓交于另一點(diǎn),與右準(zhǔn)線交于點(diǎn).設(shè)直線的斜率為.
(1)用表示橢圓的離心率;
(2)若,求橢圓的離心率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)當(dāng)時,(i)求曲線在點(diǎn)處的切線方程;
(ii)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若,求證: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的焦點(diǎn)為F,點(diǎn)P為拋物線C上一點(diǎn),,O為坐標(biāo)原點(diǎn),.
(1)求拋物線C的方程;
(2)設(shè)Q為拋物線C的準(zhǔn)線上一點(diǎn),過點(diǎn)F且垂直于OQ的直線交拋物線C于A,B兩點(diǎn)記,的面積分別為,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在古裝電視劇《知否》中,甲乙兩人進(jìn)行一種投壺比賽,比賽投中得分情況分“有初”“貫耳”“散射”“雙耳”“依竿”五種,其中“有初”算“兩籌”,“貫耳”算“四籌”,“散射”算“五籌”,“雙耳”算“六籌”,“依竿”算“十籌”,三場比賽得籌數(shù)最多者獲勝.假設(shè)甲投中“有初”的概率為,投中“貫耳”的概率為,投中“散射”的概率為,投中“雙耳”的概率為,投中“依竿”的概率為,乙的投擲水平與甲相同,且甲乙投擲相互獨(dú)立.比賽第一場,兩人平局;第二場,甲投了個“貫耳”,乙投了個“雙耳”,則三場比賽結(jié)束時,甲獲勝的概率為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2019年慶祝中華人民共和國成立70周年閱兵式彰顯了中華民族從站起來、富起來邁向強(qiáng)起來的雄心壯志.閱兵式規(guī)模之大、類型之全均創(chuàng)歷史之最,編組之新、要素之全彰顯強(qiáng)軍成就.裝備方陣堪稱“強(qiáng)軍利刃”“強(qiáng)國之盾”,見證著人民軍隊(duì)邁向世界一流軍隊(duì)的堅(jiān)定步伐.此次大閱兵不僅得到了全中國人的關(guān)注,還得到了無數(shù)外國人的關(guān)注.某單位有10位外國人,其中關(guān)注此次大閱兵的有8位,若從這10位外國人中任意選取3位做一次采訪,則被采訪者中至少有2位關(guān)注此次大閱兵的概率為( )
A.B.C.D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com