15.函數(shù)$f(x)=\sqrt{x+1}$的定義域?yàn)椋ā 。?table class="qanwser">A.(5,+∞)B.[-1,5)∪(5,+∞)C.[-1,5)D.[-1,+∞)

分析 根據(jù)二次根式的性質(zhì)求出函數(shù)的定義域即可.

解答 解:由題意得:x+1≥0,
解得:x≥-1,
故函數(shù)的定義域是[-1,+∞),
故選:D.

點(diǎn)評(píng) 本題考查了二次根式的性質(zhì),考查函數(shù)的定義域問題,是一道基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.下列說法正確的是( 。
A.命題“2≥1”是假命題
B.命題“?x∈R,x2+1>0”的否定是:$?{x_0}∈R,{x_0}^2+1$<0
C.命題“若2a>2b,則a>b”的否命題是“若2a>2b,則a≤b”
D.“x>1”是“x2+x+2>0”充分不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知直線l的方向向量為$\vec s=(1,2,x)$,平面α的法向量$\vec n=(-2,y,2)$,若l?α,則xy的最大值為( 。
A.1B.$\frac{1}{4}$C.$\frac{1}{2}$D.$\frac{1}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.設(shè)P,Q分別是圓x2+(y-1)2=3和橢圓$\frac{x^2}{4}+{y^2}=1$上的點(diǎn),則P,Q兩點(diǎn)間的最大距離是$\frac{7\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.近年來我國電子商務(wù)行業(yè)迎來發(fā)展的新機(jī)遇.2016年雙11期間,某購物平臺(tái)的銷售業(yè)績高達(dá)918億人民幣.與此同時(shí),相關(guān)管理部門推出了針對(duì)電商的商品和服務(wù)的評(píng)價(jià)體系.現(xiàn)從評(píng)價(jià)系統(tǒng)中選出200次成功交易,并對(duì)其評(píng)價(jià)進(jìn)行統(tǒng)計(jì),對(duì)商品的好評(píng)率為0.6,對(duì)服務(wù)的好評(píng)率為0.75,其中對(duì)商品和服務(wù)都作出好評(píng)的交易為80次.
(1)能否在犯錯(cuò)誤的概率不超過0.001的前提下,認(rèn)為商品好評(píng)與服務(wù)好評(píng)有關(guān)?
(2)若將頻率視作概率,某人在該購物平臺(tái)上進(jìn)行5次購物中,設(shè)對(duì)商品和服務(wù)全好評(píng)的次數(shù)為隨機(jī)變量X:
①求對(duì)商品和服務(wù)全為好評(píng)的次數(shù)X的分布列(概率用組合數(shù)算式表示);
②求X的數(shù)學(xué)期望和方程.
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
(K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.等比數(shù)列{an}的前n項(xiàng)和為Sn,若a2+S3=0,則公比q=( 。
A.-1B.1C.-2D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知某幾何體的三視圖如圖所示,則其體積為(  )
A.$2\sqrt{3}$B.$\frac{{5\sqrt{3}}}{3}$C.$\sqrt{3}$D.$\frac{{\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知|2x-1|+(y+2)2=0,則(xy)2016=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.設(shè)$a={3^{\frac{1}{3}}},b={(\frac{1}{4})^{3.1}},c={log_{0.4}}3$,則a,b,c的大小關(guān)系為( 。
A.c<a<bB.c<b<aC.b<a<cD.a<b<c

查看答案和解析>>

同步練習(xí)冊(cè)答案