分析 (1)由PC⊥平面ABC,得PC⊥DE,CD⊥DE,由此能證明DE⊥平面PCD.
(2)以C為坐標原點,分別以$\overrightarrow{CA},\overrightarrow{CB},\overrightarrow{CP}$的方向為x軸,y軸,z軸的正方向,建立空間直角坐標系,利用向量法能求出二面角B-PD-C的余弦值.
解答 證明:(1)由PC⊥平面ABC,DE?平面ABC,故PC⊥DE,
由CE=2,CD=DE=$\sqrt{2}$,得△CDE為等腰直角三角形,故CD⊥DE,
由PC∩CD=C,DE垂直于平面PCD內兩條相交直線,
故DE⊥平面PCD.
解:(2)以C為坐標原點,分別以$\overrightarrow{CA},\overrightarrow{CB},\overrightarrow{CP}$的方向為x軸,y軸,z軸的正方向,建立空間直角坐標系,
則C(0,0,0,),P(0,0,3),B(0,3,0),E(0,2,0),D(1,1,0),
$\overrightarrow{DE}$=(-1,1,0),$\overrightarrow{DP}$=(-1,-1,3),$\overrightarrow{DB}$=(-1,2,0),
設平面PAD的法向量$\overrightarrow{{n}_{1}}$=(x1,y1,z1),
則$\left\{\begin{array}{l}{\overrightarrow{{n}_{1}}•\overrightarrow{DB}=-x+2y=0}\\{\overrightarrow{{n}_{1}}•\overrightarrow{DP}=-x-y+3z=0}\end{array}\right.$,取x=2,得$\overrightarrow{n}$=(2,1,1),
由(1)知DE⊥平面PCD,故$\overrightarrow{DE}$=(-1,1,0)是平面PCD的法向量,
從而法向量$\overrightarrow{{n}_{1}}$,$\overrightarrow{DE}$的夾角的余弦值為cos<$\overrightarrow{{n}_{1}}$,$\overrightarrow{DE}$>=$\frac{\overrightarrow{{n}_{1}}•\overrightarrow{DE}}{|\overrightarrow{{n}_{1}}|•|\overrightarrow{DE}|}$=-$\frac{\sqrt{3}}{6}$,
故所求二面角B-PD-C的余弦值為-$\frac{\sqrt{3}}{6}$.
點評 本題考查線面垂直的證明,考查二面角的余弦值的求法,是中檔題,解題時要認真審題,注意向量法的合理運用.
科目:高中數學 來源: 題型:選擇題
A. | (28,+∞) | B. | [15,+∞) | C. | [28,+∞) | D. | (15,+∞) |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 1-i | B. | 1+i | C. | $\frac{1}{2}+\frac{1}{2}i$ | D. | $\frac{1}{2}-\frac{1}{2}i$ |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 大前提錯 | B. | 小前提錯 | ||
C. | 推理形式錯 | D. | 大前提和小前提都錯 |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com