分析 求出拋物線的焦點坐標,然后求出雙曲線的a,即可求解雙曲線的漸近線方程.
解答 解:∵拋物線方程為x2=8y,
∴2p=8,$\frac{p}{2}$=2,可得拋物線的焦點為F(0,2).
∵拋物線y=$\frac{1}{8}$x2與雙曲線$\frac{{y}^{2}}{{a}^{2}}$-x2=1(a>0)有共同的焦點F,
∴雙曲線的上焦點為(0,2),可得c=$\sqrt{{a}^{2}+1}$=2,解得a2=3,
可得a=$\sqrt{3}$且b=1,
∴雙曲線$\frac{{y}^{2}}{{a}^{2}}$-x2=1(a>0)的漸近線方程為y=$≠\sqrt{3}$x.
故答案為:y=$±\sqrt{3}x$
點評 本題給出雙曲線的右焦點與已知拋物線的焦點相同,求雙曲線的漸近線方程.著重考查了拋物線的簡單性質(zhì)、雙曲線的標準方程與簡單幾何性質(zhì)等知識,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {-1,1} | B. | {1,3} | C. | {3,5} | D. | {1,5} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{4}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{2}$ | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com