10.已知Sn=n2-1,則a2016=4031.

分析 Sn=n2-1,可得n≥2時,an=Sn-Sn-1,即可得出.

解答 解:∵Sn=n2-1,∴n≥2時,an=Sn-Sn-1=n2-1-[(n-1)2-1]=2n-1.
則a2016=2×2016-1=4031.
故答案為:4031.

點評 本題考查了數(shù)列的遞推關(guān)系,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.某班主任對全班50名學(xué)生的學(xué)習(xí)積極性和對待班級工作的態(tài)度進(jìn)行了調(diào)查,統(tǒng)計數(shù)據(jù)如表所示:
積極參加班級工作不太主動參加班級工作合計
學(xué)習(xí)積極性高18725
學(xué)習(xí)積極性一般61925
合計242650
參考公式:K2=${\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}^{\;}}$,其中n=a+b+c+d.
P(K2≥k)0.250.150.100.0250.0100.0050.001
k1.3232.0722.7065.0246.6357.87910.828
(1)如果隨機抽查這個班的一名學(xué)生,那么抽到積極參加班級工作的學(xué)生的概率是多少?抽到不太主動參加班級工作且學(xué)習(xí)積極性一般的學(xué)生的概率是多少?
(2)試運用獨立性檢驗的思想方法分析:是否有99%的把握認(rèn)為學(xué)生的學(xué)習(xí)積極性與對待班級工作的態(tài)度有關(guān).并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.如圖所示,三棱柱ABC-A1B1C1的所有棱長都相等,且∠C1CB=120°.
(1)求證:BC⊥AB1;
(2)若AB1=$\frac{\sqrt{6}}{2}$AB,求二面角C-AB1-C1的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知冪函數(shù)f(x)=k•xα的圖象經(jīng)過點(${\frac{1}{2}$,$\frac{{\sqrt{2}}}{2}}$),則k-α=( 。
A.$\frac{1}{2}$B.1C.$\frac{3}{2}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.求證:$\frac{{{{cos}^2}α-{{sin}^2}α}}{1-2sinαcosα}$=$\frac{1+tanα}{1-tanα}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.“奶茶妹妹”對某時間段的奶茶銷售量及其價格進(jìn)行調(diào)查,統(tǒng)計出售價x元和銷售量y杯之間的一組數(shù)據(jù)如表所示:
價格x55.56.57
銷售量y121064
通過分析,發(fā)現(xiàn)銷售量y對奶茶的價格x具有線性相關(guān)關(guān)系.
(Ⅰ)求銷售量y對奶茶的價格x的回歸直線方程;
(Ⅱ)已知一杯奶茶的成本價為3元,根據(jù)(Ⅰ)中價格對銷量的預(yù)測,為了獲得最大利潤,“奶茶妹妹”應(yīng)該將奶茶的售價大約定為多少比較合理?
注:在回歸直線y=$\hat b$x+$\hat a$中,$\widehat$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-,{\overline{x}}^{2}}$,$\hat a$=$\overline y$-$\hat b$$\overline x$.$\sum_{i=1}^4{{x_i}^2}$=52+5.52+6.52+72=146.5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.在△ABC中角A、B、C所對的邊分別為a、b、c,已知a=5,b=7,cosC=$\frac{1}{7}$,$\overrightarrow{AB}$在$\overrightarrow{BC}$方向上的投影為-4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.在山頂鐵塔上B處測得地面上一點A的俯角α=54°40′,在塔底C處測得A處的俯角β=50°1′.已知鐵塔BC部分的高為27.3m,求出山高CD(精確到1m).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知$\overrightarrow{AB}$=$\overrightarrow{a}$+5$\overrightarrow$,$\overrightarrow{BC}$=-2$\overrightarrow{a}$+8$\overrightarrow$,$\overrightarrow{CD}$=3$\overrightarrow{a}$-3$\overrightarrow$,則(  )
A.A、B、D三點共線B.A、B、C三點共線C.B、C、D三點共線D.A、C、D三點共線

查看答案和解析>>

同步練習(xí)冊答案