A. | $({-\frac{1}{4},+∞})$ | B. | $({-\frac{1}{4},0})$ | C. | $({-\frac{1}{4},2})$ | D. | $[{-\frac{1}{4},2}]$ |
分析 判斷函數(shù)$f(x)=ln\frac{1+x}{1-x}+{x^3}$在區(qū)間(-1,1)上單增,且是奇函數(shù);利用y=f(x)+f(k-x2)有兩個(gè)零點(diǎn),等價(jià)于方程x2-x-k=0在區(qū)間(-1,1)上有兩個(gè)零點(diǎn),列出不等式組求解即可.
解答 解:根據(jù)題意,可知$f(x)=ln\frac{1+x}{1-x}+{x^3}$在區(qū)間(-1,1)上單增,且是奇函數(shù);
由函數(shù)y=f(x)+f(k-x2)有兩個(gè)零點(diǎn),
等價(jià)于方程x2-x-k=0在區(qū)間(-1,1)上有兩個(gè)零點(diǎn),
令g(x)=x2-x-k,則滿足$\left\{\begin{array}{l}△>0\\ g(-1)>0\\ g(1)>0\end{array}\right.$,得$-\frac{1}{4}<k<0$.
故選:B.
點(diǎn)評(píng) 本題考查函數(shù)的單調(diào)性以及函數(shù)的奇偶性,函數(shù)的零點(diǎn)判定定理的應(yīng)用,考查計(jì)算能力.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{4}{5}$ | B. | $\frac{3}{4}$ | C. | $\frac{2}{3}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 12 | B. | 24 | C. | 36 | D. | 48 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{2\sqrt{13}}}{3}$ | B. | $\frac{{2\sqrt{13}}}{5}$ | C. | $\frac{{\sqrt{13}}}{5}$ | D. | $\frac{{\sqrt{13}}}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com