A. | 4$\sqrt{3}$ | B. | 4$\sqrt{3}$-6 | C. | 4$\sqrt{3}$-2 | D. | 6-2$\sqrt{3}$ |
分析 根據(jù)切線的性質(zhì)可得|PC|=|PB|,|F2B|=|F2D|,|F1C|=|F1D|,根據(jù)橢圓的定義可知:|PF1|+|PF2|=2a,進行等量代換可得|F1C|+|F1D|=2a+2c,根據(jù)橢圓的離心率為$\sqrt{3}$-1,a=2,即可求出c的值,進而求出|F1C|的值;設(shè)∠PF2F1=θ,則45°<θ<90°,在Rt△PF1F2中,結(jié)合|PF1|+|PF2|=2a可得2ccosθ+2csinθ=2a,進而求出θ=60°,得到|PF1|的值,即可求得圓A的半徑.
解答 解:∵圓A與△PF1F2三邊所在直線都相切,切點分別為B,C,D,
∴|PC|=|PB|,|F2B|=|F2D|,|F1C|=|F1D|.
由橢圓的定義可知:|PF1|+|PF2|=2a,
∴|PF1|+|PC|+|F2D|=2a,即|F1C|+|F1D|=2a+2c,
∴|F1C|=|F1D|=a+c.
橢圓的離心率為$\sqrt{3}$-1,a=2,
∴c=2($\sqrt{3}$-1),
∴|F1C|=|F1D|=a+c=2$\sqrt{3}$
又∵$\overrightarrow{P{F}_{1}}$•$\overrightarrow{P{F}_{2}}$=0,
則∠F1PF2=90°.設(shè)∠PF2F1=θ.
∵P是橢圓上第一象限內(nèi)的一點,45°<θ<90°,
∴2ccosθ+2csinθ=2a,即cosθ+sinθ=$\frac{a}{c}$=$\frac{\sqrt{3}+1}{2}$,
∴1+sin2θ=($\frac{\sqrt{3}+1}{2}$)2=1+$\frac{\sqrt{3}}{2}$,
∴sin2θ=$\frac{\sqrt{3}}{2}$,解得θ=60°,
∴|PF1|=2csinθ=$\sqrt{3}$c,
∴圓A的半徑為|F1C|-|PF1|=2$\sqrt{3}$-$\sqrt{3}$×2($\sqrt{3}$-1)=4$\sqrt{3}$-6.
故選B.
點評 本題考查橢圓的定義及性質(zhì)的綜合應(yīng)用,圓的切線性質(zhì),三角形函數(shù)的應(yīng)用,考查計算能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分但不必要 | B. | 必要但不充分 | ||
C. | 充分 | D. | 既不充分也不必要 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -$\frac{3}{4}$ | B. | -$\frac{4}{3}$ | C. | $\frac{3}{4}$ | D. | $\frac{4}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,$\frac{1}{e}$] | B. | (-∞,e] | C. | $({\frac{1}{e},+∞})$ | D. | (e,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{4}{5}$ | B. | $\frac{3}{5}$ | C. | $-\frac{4}{5}$ | D. | $-\frac{3}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(x)=1,g(x)=x0 | B. | f(x)=$\root{3}{x}$,g(x)=$\frac{{x}^{2}}{x}$ | C. | f(x)=lnex,g(x)=elnx | D. | f(x)=$\frac{1}{|x|}$,g(x)=$\frac{1}{\sqrt{{x}^{2}}}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com