11.在調(diào)查男女乘客是否暈機(jī)的情況中,已知男乘客暈機(jī)為28人,不會(huì)暈機(jī)的也是28人,而女乘客暈機(jī)為28人,不會(huì)暈機(jī)的為56人,
(1)根據(jù)以上數(shù)據(jù)建立一個(gè)2×2的列聯(lián)表;
(2)判斷是否能有95%的把握說(shuō)暈機(jī)與性別有關(guān)?
P(K2≥k00.500.400.250.150.100.050.0250.0100.0050.001
k00.4550.7081.3232.0722.7063.8415.0246.6357.87910.828

分析 (1)根據(jù)題意,填寫列聯(lián)表即可;
(2)計(jì)算臨界值,對(duì)照觀測(cè)值即可得出結(jié)論.

解答 解:(1)填寫2×2列聯(lián)表如下:

暈機(jī)不暈機(jī)合計(jì)
男乘客282856
女乘客285684
合計(jì)5684140
…(6分)
(2)假設(shè)是否暈機(jī)與性別無(wú)關(guān),
則k2的觀測(cè)值$k=\frac{{140{{(28×56-28×28)}^2}}}{56×84×56×84}=\frac{35}{9}≈3.888$,…(10分)
所以,有95%的把握認(rèn)為是否暈機(jī)與性別有關(guān);…(12分)

點(diǎn)評(píng) 本題考查了獨(dú)立性檢驗(yàn)的應(yīng)用問(wèn)題,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.如圖,點(diǎn)O為△ABC的重心,OA⊥OB,且AB=2,則$\overrightarrow{AC}$•$\overrightarrow{BC}$的值為8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.如圖,網(wǎng)格紙上小正方形的邊長(zhǎng)為1,粗線畫出的是某三棱錐的三視圖,則該三棱錐的表面積是(  )
A.$1+\sqrt{5}$B.$2+\sqrt{5}$C.$1+2\sqrt{5}$D.$2+2\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.下列函數(shù)稱為雙曲函數(shù):雙曲正弦:shx=$\frac{{e}^{x}-{e}^{-x}}{2}$,雙曲余弦:chx=$\frac{{e}^{x}+{e}^{-x}}{2}$,雙曲正切:thx=$\frac{{e}^{x}-{e}^{-x}}{{e}^{x}+{e}^{-x}}$.
(1)對(duì)比三角函數(shù)的性質(zhì),請(qǐng)你找出它們的三個(gè)類似性質(zhì);
(2)求雙曲正弦shx的導(dǎo)數(shù),并求在點(diǎn)x=0處的切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知$α∈(\frac{π}{2},π)$,且$sinα=\frac{4}{5}$.
(1)求$cos(α-\frac{π}{4})$的值;
(2)求${sin^2}\frac{α}{2}+\frac{sin4αcos2α}{1+cos4α}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.設(shè)函數(shù)f(x)在R上可導(dǎo),其導(dǎo)函數(shù)為f′(x),若y=(1-x)f′(x)的圖象如圖所示,則下列結(jié)論成立的是( 。
A.函數(shù)f(x)有極大值f(-2)和極小值f(2)B.函數(shù)f(x)有極大值f(-3)和極小值f(1)
C.函數(shù)f(x)有極大值f(-3)和極小值f(3)D.函數(shù)f(x)有極大值f(3)和極小值f(-2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.?dāng)?shù)列{an}的前n項(xiàng)和記為Sn,點(diǎn)(n,Sn)在函數(shù)f(x)=x2-4x(x∈N*)的圖象上.求數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.在極坐標(biāo)系中,若過(guò)點(diǎn)A(3,0)且與極軸垂直的直線交曲線ρ=4cosθ于A、B兩點(diǎn),則|AB|=( 。
A.$2\sqrt{2}$B.2$\sqrt{3}$C.$3\sqrt{2}$D.$3\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知在四棱柱ABCD-A1B1C1D1,側(cè)棱AA1⊥底面ABCD,AB⊥AD,BC∥AD,且AB=2,AD=4,BC=1,側(cè)棱AA1=4.
(1)若E為AA1上一點(diǎn),試確定E點(diǎn)的位置,使EB∥平面A1CD;
(2)在(1)的條件下,求二面角E-BD-A的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案