8.共享單車是指企業(yè)在校園、地鐵站點(diǎn)、公交站點(diǎn)、居民區(qū)、商業(yè)區(qū)、公共服務(wù)區(qū)等提供自行車單車共享服務(wù),是共享經(jīng)濟(jì)的一種新形態(tài).一個共享單車企業(yè)在某個城市就“一天中一輛單車的平均成本(單位:元)與租用單車的數(shù)量(單位:千輛)之間的關(guān)系”進(jìn)行調(diào)查研究,在調(diào)查過程中進(jìn)行了統(tǒng)計,得出相關(guān)數(shù)據(jù)見下表:
 租用單車數(shù)量x(千輛) 2 3 4 5 8
 每天一輛車平均成本y(元) 3.2 2.4 2 1.9 1.7
根據(jù)以上數(shù)據(jù),研究人員分別借助甲、乙兩種不同的回歸模型,得到兩個回歸方程,方程甲:$\stackrel{∧}{y}$(1)=$\frac{4}{x}$+1.1,方程乙:$\stackrel{∧}{y}$(2)=$\frac{6.4}{{x}^{2}}$+1.6.
(1)為了評價兩種模型的擬合效果,完成以下任務(wù):
①完成下表(計算結(jié)果精確到0.1)(備注:$\stackrel{∧}{{e}_{i}}$=yi-$\stackrel{∧}{{y}_{i}}$,$\stackrel{∧}{{e}_{i}}$稱為相應(yīng)于點(diǎn)(xi,yi)的殘差(也叫隨機(jī)誤差);
  租用單車數(shù)量x(千輛) 2 3 4 5 8
 每天一輛車平均成本y(元) 3.2   2.4 2 1.9   1.7
 模型甲 估計值$\stackrel{∧}{{y}_{i}}$(1)  2.4 2.1  1.6
 殘差$\stackrel{∧}{{e}_{i}}$(1)  0-0.1  0.1
模型乙 估計值$\stackrel{∧}{{y}_{i}}$ (2)  2.3 21.9  
殘差$\stackrel{∧}{{e}_{i}}$(2)  0.1 0 0 
②分別計算模型甲與模型乙的殘差平方和Q1及Q2,并通過比較Q1,Q2的大小,判斷哪個模型擬合效果更好.
(2)這個公司在該城市投放共享單車后,受到廣大市民的熱烈歡迎,共享單車常常供不應(yīng)求,于是該公司研究是否增加投放.根據(jù)市場調(diào)查,這個城市投放8千輛時,該公司平均一輛單車一天能收入10元,6元收入的概率分別為0.6,0.4;投放1萬輛時,該公司平均一輛單車一天能收入10元,6元的概率分別為0.4,0.6.問該公司應(yīng)該投放8千輛還是1萬輛能獲得更多利潤?(按(1)中擬合效果較好的模型計算一天中一輛單車的平均成本,利潤=收入-成本).

分析 (1)①通過計算填寫表中數(shù)據(jù);②計算模型甲、乙的殘差平方,比較即可得出結(jié)論;
(2)計算投放共享單車為8千輛和1萬輛時,該公司一天獲得的總利潤,從而得出正確的結(jié)論.

解答 解:(1)①經(jīng)計算,可得下表(計算結(jié)果精確到0.1);

  租用單車數(shù)量x(千輛) 2 3 4 5 8
 每天一輛車平均成本y(元) 3.2   2.4 2 1.9   1.7
 模型甲 估計值$\stackrel{∧}{{y}_{i}}$(1)3.1  2.4 2.11.9  1.6
 殘差$\stackrel{∧}{{e}_{i}}$(1);0.1  0-0.1 0 0.1
模型乙 估計值$\stackrel{∧}{{y}_{i}}$ (2)3.2  2.3 21.9 1.7 
殘差$\stackrel{∧}{{e}_{i}}$(2) 0.1 0 0 0
②計算模型甲的殘差平方Q1=0.12+(-0.1)2+0.12=0.03,
模型乙的殘差平方Q2=0.12=0.01;
∴Q1>Q2,故模型乙的擬合效果更好;
(2)若該城市投放共享單車為8千輛時,則該公司獲得每輛車一天的收入期望為:
10×0.6+6×0.4=8.4(元),
所以該公司一天獲得的總利潤為(8.4-1.7)×8000=53600(元);
若投放共享單車為1萬輛時,則每輛車的成本為$\frac{6.4}{{10}^{2}}$+1.6=1.664(元),
每輛車一天的收入期望為10×0.4+6×0.6=7.6(元),
所以該公司一天獲得的總利潤為(7.6-1.664)×10000=59360(元);
由59360>53600,∴投放1萬輛能獲得更多利潤,應(yīng)該增加到投放1萬輛.

點(diǎn)評 本題考查了殘差平方的計算問題,也考查了利潤函數(shù)的計算問題,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.利用等式kCnk=nCn-1k-1(1≤k≤n,k,n∈N*)可以化簡1•Cn1+2•Cn221+n•Cnn2n-1=nCn-10+n•Cn-1121+n•Cn222+…+n•Cn-1n-12n-1=n(1+2)n-1=n•3n-1.等式kCnk=nCn-1k-1有幾種變式,如:$\frac{1}{k}C_{n-1}^{k-1}=\frac{1}{n}$Cnk又如將n+1賦給n,可得到kCn+1k=(n+1)Cnk-1,…,類比上述方法化簡等式:Cn0•$\frac{1}{5}+\frac{1}{2}C_n^1•{({\frac{1}{5}})^2}+\frac{1}{3}C_n^2•{({\frac{1}{5}})^3}+…+\frac{1}{n+1}C_n^n•{({\frac{1}{5}})^{n+1}}$=$\frac{1}{n+1}[{{{(\frac{6}{5})}^{n+1}}-1}]$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知函數(shù)數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$),在一個周期內(nèi)的圖象如圖所示,若已知函數(shù)數(shù)f(x1)=f(x2),且x1,x2∈[$\frac{π}{12}$,$\frac{5π}{6}$],x1≠x2,則f(x1+x2)=( 。
A.$\sqrt{3}$B.2C.-$\sqrt{3}$D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.若{$\frac{{a}_{n}}{n}$+1}是公比為2的等比數(shù)列,且a1=1,則a1+$\frac{{a}_{2}}{2}$+$\frac{{a}_{3}}{3}$+…+$\frac{{a}_{9}}{9}$=1013.(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.若sin($α+\frac{π}{4}$)=$\sqrt{2}$(sinα+2cosα),則sin2α=( 。
A.-$\frac{4}{5}$B.$\frac{4}{5}$C.-$\frac{3}{5}$D.$\frac{3}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知奇函數(shù)f(x)在R上是增函數(shù).若a=-f(log2$\frac{1}{5}$),b=f(log24.1),c=f(20.8),則a,b,c的大小關(guān)系為( 。
A.a>b>cB.b>c>aC.c>b>aD.c>a>b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.由“若數(shù)列{an}為等差數(shù)列,則有$\frac{{a}_{6}+{a}_{7}+…+{a}_{10}}{5}$=$\frac{{a}_{1}+{a}_{2}+…+{a}_{15}}{15}$成立”類比“若數(shù)列{bn}為正項等比數(shù)列,則有$\root{5}{{_{6}b}_{7}••{•b}_{10}}$=$\root{15}{{{_{1}b}_{2}b}_{3}••{•b}_{15}}$成立”.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.設(shè)$[{\begin{array}{l}2\\ 3\end{array}}]$是矩陣$M=[{\begin{array}{l}a&2\\ 3&2\end{array}}]$的一個特征向量.
(1)求實(shí)數(shù)a的值;
(2)求矩陣M的特征值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.如圖,在四棱錐P-ABCD中,底面ABCD是邊長為2的正方形,△PAB為等邊三角形,O為AB的中點(diǎn),PO丄AC.
(1)求證:平面PAB丄平面ABCD;
(2)求PC與平面ABCD所成角的余弦值.

查看答案和解析>>

同步練習(xí)冊答案