“所有9的倍數(shù)都是3的倍數(shù),某奇數(shù)是9的倍數(shù),故某奇數(shù)是3的倍數(shù).”上述推理是( 。
A、正確的B、大前提錯
C、小前提錯D、結(jié)論錯
考點:演繹推理的意義
專題:推理和證明
分析:要分析一個演繹推理是否正確,主要觀察所給的大前提,小前提和結(jié)論是否都正確,根據(jù)三個方面都正確,得到結(jié)論.
解答: 解:∵所有9的倍數(shù)都是3的倍數(shù),某奇數(shù)是9的倍數(shù),故某奇數(shù)是3的倍數(shù),
大前提:所有9的倍數(shù)都是3的倍數(shù),
小前提:某奇數(shù)是9的倍數(shù),
結(jié)論:故某奇數(shù)是3的倍數(shù),
∴這個推理是正確的,
故選A
點評:本題是一個簡單的演繹推理,這種問題不用進(jìn)行運(yùn)算,只要根據(jù)所學(xué)的知識點,判斷這種說法是否正確,是一個基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知某籃球運(yùn)動員2013年度參加了25場比賽,若從中抽取5場,用莖葉圖統(tǒng)計該運(yùn)動員5場中的得分如圖所示,則該樣本的方差為 ( 。
A、4
B、
10
C、18
D、16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果一扇形的弧長為π,半徑等于2,則扇形所對圓心角為( 。
A、π
B、2π
C、
π
2
D、
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)有一個回歸方程為
y
=2.5x+3,變量x增加一個單位時,則( 。
A、y平均增加5.5個單位
B、y平均增加2.5個單位
C、y平均減少2.5個單位
D、y平均減少5.5個單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=f(x),將f(x)圖象上每一點的縱坐標(biāo)保持不變,橫坐標(biāo)擴(kuò)大到原來的2倍,然后把所得到的圖象沿x軸向左平移
π
4
個單位,這樣得到的曲線與y=3sinx的圖象相同,那么y=f(x)的解析式為( 。
A、f(x)=3sin(
x
2
-
π
4
B、f(x)=3sin(2x+
π
4
C、f(x)=3sin(
x
2
+
π
4
D、f(x)=3sin(2x-
π
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若|
a
|=1,|
b
|=2,|
a
+
b
|=
7
,則
a
b
的夾角θ的余弦值為( 。
A、-
1
2
B、
1
2
C、
1
3
D、以上都不對

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

以下說法中,正確的個數(shù)是(  )
①平面α內(nèi)有一條直線和平面β平行,那么這兩個平面平行
②平面α內(nèi)有兩條直線和平面β平行,那么這兩個平面平行
③平面α內(nèi)有無數(shù)條直線和平面β平行,那么這兩個平面平行
④平面α內(nèi)任意一條直線和平面β都無公共點,那么這兩個平面平行.
A、0個B、1個C、2個D、3個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線y=-x+1與橢圓
x2
a2
+
y2
b2
=1(a>b>0)相交于A,B兩點,若橢圓離心率為
3
3
,焦距為2.
(1)求橢圓方程;
(2)求線段AB的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=(4-|x|)
3
2
,求f(x)的定義域和值域,并判斷其奇偶性.

查看答案和解析>>

同步練習(xí)冊答案