分析 (1)由題意可知求得丨OA丨,丨OB丨及丨OC丨,即可證明|OB|+|OC|=$\sqrt{2}$|OA|;
(2)當(dāng)β=$\frac{7π}{12}$時(shí),求得B和C點(diǎn)坐標(biāo),求得直線l的方程,即可求得y0與α的值.
解答 解:(1)證明:由題意可知丨OA丨=4sinβ,丨OB丨=4sin(β+$\frac{π}{4}$),丨OC丨=4sin(β-$\frac{π}{4}$),
則丨OB丨+丨OC丨=4sin(β+$\frac{π}{4}$)+4sin(β-$\frac{π}{4}$)=4$\sqrt{2}$sinβ=$\sqrt{2}$丨OA丨,
(2)當(dāng)β=$\frac{7π}{12}$時(shí),B點(diǎn)的極坐標(biāo)為(4sin($\frac{7π}{12}$+$\frac{π}{4}$),($\frac{7π}{12}$+$\frac{π}{4}$)),
C的極坐標(biāo)為(4sin($\frac{7π}{12}$-$\frac{π}{4}$),($\frac{7π}{12}$+$\frac{π}{4}$)),
轉(zhuǎn)化成直角坐標(biāo)B(-$\sqrt{3}$,1),C($\sqrt{3}$,3),
則直線l的方程為x-$\sqrt{3}$y+2$\sqrt{3}$=0,
則y0=2,α=$\frac{π}{6}$.
點(diǎn)評(píng) 本題考查極坐標(biāo)與直角坐標(biāo)的轉(zhuǎn)化,考查兩角和的正弦公式,考查計(jì)算能力,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4 | B. | 5 | C. | 6 | D. | 7 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com