16.若z=4+3i(i為虛數(shù)單位),則$\frac{\overline{z}}{|z|}$=(  )
A.$\frac{3}{5}$-$\frac{4}{5}$iB.$\frac{3}{5}$+$\frac{4}{5}$iC.$\frac{4}{5}$+$\frac{3}{5}$iD.$\frac{4}{5}$-$\frac{3}{5}$i

分析 復(fù)數(shù)的模和和共軛復(fù)數(shù)的定義即可求出

解答 解:z=4+3i(i為虛數(shù)單位),則$\overline{z}$=4-3i,|z|=$\sqrt{{4}^{2}+{3}^{2}}$=5,
∴$\frac{\overline{z}}{|z|}$=$\frac{4-3i}{5}$=$\frac{4}{5}$-$\frac{3}{5}$i,
故選:D

點(diǎn)評(píng) 本題考查了復(fù)數(shù)的模和和共軛復(fù)數(shù)的定義,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.一個(gè)扇形OAB的面積為1平方厘米,它的周長(zhǎng)為4厘米,則它的中心角是( 。
A.2弧度B.3弧度C.4弧度D.5弧度

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知函數(shù)f(x)=$\left\{\begin{array}{l}{2-|x|,x≤2}\\{(x-2)^{2},x>2}\end{array}\right.$函數(shù)g(x)=f(2-x)-$\frac{1}{4}$b,其中b∈R,若函數(shù)y=f(x)+g(x)恰有4個(gè)零點(diǎn),則b的取值范圍是( 。
A.(7,8)B.(8,+∞)C.(-7,0)D.(-∞,8)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.某校組織學(xué)生假期游學(xué)活動(dòng).設(shè)計(jì)了兩條路線:A路線為“山西尋根之旅“,B路線為“齊魯文化之旅”,現(xiàn)調(diào)査了50名學(xué)生的游學(xué)意愿.有如下結(jié)果:選擇A路線的人數(shù)是全體的五分之三.選擇B路線的人數(shù)比選擇A路線的人數(shù)多3;另外,兩條路線A,B都不選擇的學(xué)生人數(shù)比兩條路線A,B都選擇的人數(shù)的三分之一多3.則兩條路線A,B都不選擇的學(xué)生人數(shù)為(  )
A.8B.9C.10D.11

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知函數(shù)f(x)=ex-ax.
(I )若曲線y=f(x)在點(diǎn)(1,f(1))處的切線與直線y=ax+2平行.求實(shí)數(shù)a的值;
(Ⅱ)討論f(x)的單調(diào)性;
(Ⅲ)當(dāng)0<a<l時(shí),證明:曲線y=f(x)在直線y=(e-1)x的上方.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.過(guò)圓x2+y2-x+y-2=0和x2+y2=5交點(diǎn)的直線方程為x-y-3=0.(一般式方程)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知函數(shù)f(x)=x3-x2+a,
 (1)求f(x)的極值;
(2)當(dāng)a在什么范圍內(nèi)取值時(shí),曲線與x軸僅有一個(gè)交點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.若樣本x1+1,x2+1,…,xn+1的平均數(shù)為10,其方差為2,則樣本x1+2,x2+2,…,xn+2的平均數(shù)為11,方差為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.若雙曲線x2-y2=2右支上一點(diǎn)(s,t)到直線y=x的距離為2,則s-t的值等于( 。
A.2B.$2\sqrt{2}$C.-2D.$-2\sqrt{2}$

查看答案和解析>>

同步練習(xí)冊(cè)答案