1.過圓x2+y2-x+y-2=0和x2+y2=5交點(diǎn)的直線方程為x-y-3=0.(一般式方程)

分析 把兩個(gè)圓的方程相減,即可求得兩個(gè)圓的公共弦所在的直線方程.

解答 解:把圓x2+y2-x+y-2=0和x2+y2=5的方程相減,可得x-y-3=0.
由于所得的直線方程既滿足第一個(gè)圓的方程,又滿足第二個(gè)圓的方程,
故必然是兩個(gè)圓的公共弦所在的直線方程.
故過圓x2+y2-x+y-2=0和x2+y2=5的交點(diǎn)的直線方程為x-y-3=0,
故答案為:x-y-3=0.

點(diǎn)評(píng) 本題主要考查圓和圓的位置關(guān)系,求兩個(gè)圓的公共弦所在的直線方程的方法,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.下列說法正確的是①④.
①利用樣本點(diǎn)的散點(diǎn)圖可以直觀的判斷兩個(gè)變量的關(guān)系是否可以用線性關(guān)系表示.
②相關(guān)系數(shù)-1≤r≤1 且r 越大相關(guān)性越強(qiáng)
③用相關(guān)指數(shù)R2刻畫回歸方程的擬合效果,R2越小,擬合效果越好.
④殘差平方和越小的回歸模型,擬合效果越好.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.設(shè)集合U={-2,-1,0,1,2},A={x|x2-x-2=0},則∁UA=( 。
A.{-2,1}B.{-1,2}C.{-2,0,1}D.{-2,-1,0,1,2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知函數(shù)f(x)=$\left\{\begin{array}{l}{1-{x}^{3},x>0}\\{{2}^{x},x≤0}\end{array}\right.$,則f(f(-1))=$\frac{7}{8}$,f(x)的值域?yàn)椋?∞,1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.若z=4+3i(i為虛數(shù)單位),則$\frac{\overline{z}}{|z|}$=( 。
A.$\frac{3}{5}$-$\frac{4}{5}$iB.$\frac{3}{5}$+$\frac{4}{5}$iC.$\frac{4}{5}$+$\frac{3}{5}$iD.$\frac{4}{5}$-$\frac{3}{5}$i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.若函數(shù)f(x)=-x3+ax2+bx-7在R上單調(diào)遞減,則實(shí)數(shù)a,b一定滿足條件(  )
A.a2+3b≤0B.a2+3b<0C.a2+3b>0D.a2+3b=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)的圖象是由函數(shù)g(x)=cosx的圖象經(jīng)如下變換得到:現(xiàn)將g(x)圖象上所有點(diǎn)的縱坐標(biāo)伸長(zhǎng)到原來的2倍,(橫坐標(biāo)不變),再講所得的圖象向右平移$\frac{π}{2}$個(gè)單位長(zhǎng)度.
(1)求函數(shù)f(x)的解析式,并求其圖象的對(duì)稱軸的方程;
(2)已知關(guān)于x的方程f(x)+g(x)=m在[0,2π]內(nèi)有兩個(gè)不同的解α,β,
①求實(shí)數(shù)m的取值范圍.
②證明:cos(α-β)=$\frac{2{m}^{2}}{5}$-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.在復(fù)平面內(nèi),復(fù)數(shù)z=1-i對(duì)應(yīng)的向量為$\overrightarrow{OP}$,復(fù)數(shù)z2對(duì)應(yīng)的向量為$\overrightarrow{OQ}$,那么向量$\overrightarrow{PQ}$對(duì)應(yīng)的復(fù)數(shù)為( 。
A.1-iB.1+iC.-1+iD.-1-i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.函數(shù)y=f(x+1)的定義域?yàn)閇-1,2],則函數(shù)y=f (x)的定義域?yàn)椋ā 。?table class="qanwser">A.[-1,2]B.[0,2]C.[-1,3]D.[0,3]

查看答案和解析>>

同步練習(xí)冊(cè)答案