10.在區(qū)間[-1,5]上隨機地取一個實數(shù)a,則方程x2-2ax+4a-3=0有兩個正根的概率為(  )
A.$\frac{2}{3}$B.$\frac{1}{2}$C.$\frac{3}{8}$D.$\frac{1}{3}$

分析 根據(jù)根與系數(shù)之間的關系,求出a的取值范圍,結合幾何概型的概率公式進行計算即可.

解答 解:若方程x2-2ax+4a-3=0有兩個正根,
則滿足$\left\{\begin{array}{l}{△=4{a}^{2}-4(4a-3)=4({a}^{2}-4a+3)≥0}\\{4a-3>0}\\{2a>0}\end{array}\right.$,
即$\left\{\begin{array}{l}{a≥3或a≤1}\\{a>\frac{3}{4}}\\{a>0}\end{array}\right.$,得$\frac{3}{4}$<a≤1或a≥3,
∵-1≤a≤5
則對應的概率P=$\frac{1-\frac{3}{4}}{5-(-1)}$+$\frac{5-3}{5-(-1)}$=$\frac{1}{24}$+$\frac{1}{3}$=$\frac{3}{8}$,
故選:C

點評 本題主要考查幾何概型的概率的計算,根據(jù)根與系數(shù)之間的關系求出a的取值范圍是解決本題的關鍵.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

20.已知實數(shù)x的取值范圍為[0,10],給出如圖所示程序框圖,輸入一個數(shù)x.
(1)請寫出程序框圖所表示的函數(shù)表達式;
(2)當x∈N時,求輸出的y(y<5)的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.函數(shù)y=2$\sqrt{3}sinxcosx+8si{n}^{2}x+2co{s}^{2}$x,
(1)求函數(shù)y的最小值及取得最小值時x的集合;
(2)求函數(shù)y的對稱軸.對稱中心;
(3)求函數(shù)y的單調增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.設甲、乙、丙三個乒乓球協(xié)會的運動員人數(shù)分別為27,9,18,現(xiàn)采用分層抽樣的方法從這三個協(xié)會中抽取6名運動員組隊參加比賽
(1)求應從這三個協(xié)會中分別抽取的運動員的人數(shù);
(2)將抽取的6名運動員進行編號,編號分別為A1,A2,A3,A4,A5,A6.現(xiàn)從這6名運動員中隨機抽取2人參加雙打比賽,設A為事件“編號為A5和A6的兩名運動員中至少有1人被抽到”,求事件A發(fā)生的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.當h無限趨近于0時,$\lim_{h→0}$$\frac{(3+h)^{2}-{3}^{2}}{h}$=6.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.某工廠為了對新研發(fā)的一種產品進行合理定價,將該產品按事先擬定的價格進行試銷,得到如下數(shù)據(jù):
單價x(元)88.28.48.68.89
銷量y(件)908483807568
(1)求回歸直線方程$\stackrel{∧}{y}$=bx+a,其中b=-20,a=$\overline{y}$-b$\overline{x}$;
(2)預計在今后的銷售中,銷量與單價仍然服從(1)中的關系,且該產品的成本是4元/件,為使工廠獲得最大利潤,該產品的單價應定為多少元?(利潤=銷售收入-成本)
回歸直線的斜率和截距的最小二乘估計公式分別為$\stackrel{∧}$=$\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_i^2-n{{\overline x}^2}}}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知函數(shù)f(x)=ax-ex(a∈R),g(x)=$\frac{lnx}{x}$
(1)討論函數(shù)y=f(x)的單調性;
(2)?x0∈(0,+∞),使不等式f(x0)≤g(x0)-ex0成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.由直線x=$\frac{1}{3}$,x=3,曲線y=$\frac{1}{x}$及x軸所圍圖形的面積是2ln3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知數(shù)列{an}的前n項為和Sn,點(n,$\frac{{S}_{n}}{n}$)在直線y=$\frac{1}{2}$x+$\frac{11}{2}$上.數(shù)列{bn}滿足bn+2-2bn+1+bn=0(n∈N*),且b3=11,前9項和為153.
(1)求數(shù)列{an},{bn}的通項公式;
(2)求數(shù)列$\left\{{({a_n}-5)•{2^{a_n}}}\right\}$的前n項和Tn
(3)設n∈N*,f(n)=$\left\{\begin{array}{l}{{a}_{n},n為奇數(shù)}\\{_{n},n為偶數(shù)}\end{array}\right.$問是否存在m∈N*,使得f(m+15)=5f(m)成立?若存在,求出m的值;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案