19.已知變量x,y滿足約束條件$\left\{\begin{array}{l}{x≥2}\\{y≤4}\\{3x-2y≤6}\end{array}\right.$,則z=3x+y的最大值為18.

分析 作出不等式組對(duì)應(yīng)的平面區(qū)域,根據(jù)z的幾何意義,利用數(shù)形結(jié)合即可得到最大值.

解答 解:約束條件$\left\{\begin{array}{l}{x≥2}\\{y≤4}\\{3x-2y≤6}\end{array}\right.$,對(duì)應(yīng)的平面區(qū)域如圖:
由z=3x+y得y=-3x+z,
平移直線y=-3x+z,則由圖象可知當(dāng)直線y=-3x+z經(jīng)過(guò)點(diǎn)A時(shí)直線y=-3x+z的截距最大,
此時(shí)z最大,
由$\left\{\begin{array}{l}{y=4}\\{3x-2y=6}\end{array}\right.$得A($\frac{14}{3}$,4),
此時(shí)z=3×$\frac{14}{3}$+4=18,
故答案為:18.

點(diǎn)評(píng) 本題主要考查線性規(guī)劃的應(yīng)用,根據(jù)z的幾何意義,利用數(shù)形結(jié)合是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.f(x)=$\sqrt{3}sin(2x-\frac{π}{12})-cos(2x-\frac{π}{12})$在x∈$[0,\frac{π}{2}]$的對(duì)稱軸為( 。
A.$x=\frac{π}{8}$B.$x=\frac{π}{4}$C.$x=\frac{π}{3}$D.$x=\frac{3π}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知函數(shù)f(x)=|x+a|-|x-1|.
(Ⅰ)當(dāng)a=-2時(shí),求不等式$f(x)≥\frac{1}{2}$的解集;
(Ⅱ)若f(x)≥2有解,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.從區(qū)間(0,2)上任取一個(gè)實(shí)數(shù)m,則直線x-$\sqrt{3}$y=0與圓(x-1)2+y2=m(m>0)相交的概率為(  )
A.$\frac{7}{8}$B.$\frac{3}{4}$C.$\frac{1}{2}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.已知變量x,y滿足約束條件$\left\{\begin{array}{l}{x≥2}\\{y≤4}\\{3x-2y≤6}\end{array}\right.$,則z=3x+y的取值范圍為[6,18].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.在平面直角坐標(biāo)系中,正方形ABCD的中心坐標(biāo)為(1,0),其一邊AB所在直線的方程為x-y+1=0,則邊CD所在直線的方程為( 。
A.x-y-1=0B.x-y-2=0C.x-y-3=0D.x-y-4=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知角α的終邊是射線y=-x(x≥0),則sinα的值等于( 。
A.±$\frac{1}{2}$B.$\frac{\sqrt{2}}{2}$C.±$\frac{\sqrt{2}}{2}$D.-$\frac{\sqrt{2}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知集合A={x|-a-2<x<a+2},B={x|x≤-2或x≥4},若A∩B=∅,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案