【題目】已知橢圓的焦距等于,短軸與長(zhǎng)軸的長(zhǎng)度比等于.
(1)求橢圓的方程;
(2)設(shè)點(diǎn)在橢圓上,過(guò)作兩直線,分別交橢圓于另外兩點(diǎn),當(dāng)的傾斜角互為補(bǔ)角時(shí),求面積的最大值.
【答案】(1) (2)
【解析】
(1)因?yàn)闄E圓的焦距等于,短軸與長(zhǎng)軸的長(zhǎng)度比等于,可得: ,即可求得答案;
(2)設(shè),,由題條件知直線的斜率存在且互為相反數(shù),
設(shè)的斜率為,由(1)中的方程知,的方程為,即可求得和點(diǎn)到直線直線的距離的表達(dá)式,進(jìn)而求得面積的最大值.
(1) 橢圓的焦距等于,短軸與長(zhǎng)軸的長(zhǎng)度比等于
得
解得,,
橢圓的方程為.
(2)設(shè),,
由題條件知直線的斜率存在且互為相反數(shù),
設(shè)的斜率為,由(1)中的方程知,
的方程為.
由消掉
可得,
顯然是上述方程的一個(gè)根,
根據(jù)韋達(dá)定理可得:.
同理可得,
于是,,
,
.
可設(shè)直線的方程為,
則由,消掉
可得:
其中由,
得,且此時(shí)有
又 點(diǎn)到直線的距離,
根據(jù)兩點(diǎn)距離公式可得:,
,
(此時(shí)).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某新上市的電子產(chǎn)品舉行為期一個(gè)星期(7天)的促銷活動(dòng),規(guī)定購(gòu)買該電子產(chǎn)品可免費(fèi)贈(zèng)送禮品一份,隨著促銷活動(dòng)的有效開(kāi)展,第五天工作人員對(duì)前五天中參加活動(dòng)的人數(shù)進(jìn)行統(tǒng)計(jì),表示第天參加該活動(dòng)的人數(shù),得到統(tǒng)計(jì)表格如下:
1 | 2 | 3 | 4 | 5 | |
4 | 6 | 10 | 23 | 22 |
(1)若與具有線性相關(guān)關(guān)系,請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程;
(2)預(yù)測(cè)該星期最后一天參加該活動(dòng)的人數(shù)(按四舍五入取到整數(shù)).
參考公式:,
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),若過(guò)點(diǎn)P(1,t)存在3條直線與曲線相切,求t的取值范圍__________。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)若函數(shù)在上單調(diào)遞增,求實(shí)數(shù)的取值范圍;
(2)當(dāng)時(shí),若方程有兩個(gè)不等實(shí)數(shù)根,,求實(shí)數(shù)的取值范圍,并證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在三棱錐中,與都是邊長(zhǎng)為2的等邊三角形,是側(cè)棱的中點(diǎn),過(guò)點(diǎn)作平行于、的平面分別交棱、、于點(diǎn)、、.
(1)證明:四邊形為矩形;
(2)若平面平面,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),若函數(shù)有5個(gè)零點(diǎn),則實(shí)數(shù)的取值范圍是( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓C:的焦距為2,左頂點(diǎn)與上頂點(diǎn)連線的斜率為.
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)過(guò)點(diǎn)P(m,0)作圓x2+y2=1的一條切線l交橢圓C于M,N兩點(diǎn),當(dāng)|MN|的值最大時(shí),求m的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形是梯形,四邊形是矩形,且平面平面,,,是線段上的動(dòng)點(diǎn).
(1)試確定點(diǎn)的位置,使平面,并說(shuō)明理由;
(2)在(1)的條件下,求平面與平面所成銳二面角的余弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com