【題目】某農科所對冬季晝夜溫差大小與某反季節(jié)大豆新品種發(fā)芽多少之間進行分析研究,他們分別記錄了12月1日至12月5日的每天晝夜溫差與實驗室每天每100棵種子中的發(fā)芽數,得到如下資料:
日期 | 12月1日 | 12月2日 | 12月3日 | 12月4日 | 12月5日 |
溫差攝氏度 | 10 | 11 | 13 | 12 | 8 |
發(fā)芽顆 | 23 | 25 | 30 | 26 | 16 |
該農科所確定的研究方案是:先從這5組數據中選取3組數據求線性回歸方程,再用剩下的2組數據進行檢驗.
(1)若選取的3組數據恰好是連續(xù)天的數據(表示數據來自互不相鄰的三天),求的分布列及期望:
(2)根據12月2日至4日數據,求出發(fā)芽數關于溫差的線性回歸方程.由所求得線性回歸方稻得到的估計數據與剩下的檢驗數據的誤差均不超過2顆,則認為得到的線性回歸方程是可靠的,試問所得的線性回歸方程是否可靠?
附:參考公式:.
科目:高中數學 來源: 題型:
【題目】設橢圓()的離心率為,圓與軸正半軸交于點,圓在點處的切線被橢圓截得的弦長為.
(Ⅰ)求橢圓的方程;
(Ⅱ)設圓上任意一點處的切線交橢圓于點,試判斷是否為定值?若為定值,求出該定值;若不是定值,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】回收1噸廢紙可以生產出0.8噸再生紙,可能節(jié)約用水約100噸,節(jié)約用煤約1.2噸,回收1噸廢鉛蓄電池可再生鉛約0.6噸,可節(jié)約用煤約0.8噸,節(jié)約用水約120噸,回收每噸廢鉛蓄電池的費用約0.9萬元,回收1噸廢紙的費用約為0.2萬元.現(xiàn)用于回收廢紙和廢鉛蓄電池的費用不超過18萬元,在保證節(jié)約用煤不少于12噸的前提下,最多可節(jié)約用水約__________噸.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】吳老師的班上有四名體育健將張明、王亮、李陽、趙旭,他們都特別擅長短跑,在某次運動會上,他們四人要組成一個米接力隊,吳老師要安排他們四人的出場順序,以下是他們四人的對話:
張明:我不跑第一棒和第二棒;
王亮:我不跑第一棒和第四棒;
李陽:我也不跑第一棒和第四棒;
趙旭:如果王亮不跑第二棒,我就不跑第一棒.
吳老師聽了他們四人的對話,安排了一種合理的出場順序,滿足了他們的所有要求,據此我們可以斷定,在吳老師安排的出場順序中,跑第三棒的人是( )
A. 張明B. 王亮C. 李陽D. 趙旭
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,已知為拋物線上在軸下方的一點,直線,,與拋物線在第一象限的交點從左到右依次為,,,與軸的正半軸分別相交于點,,,且,直線的方程為.
(1)當時,設直線,的斜率分別為,,證明:;
(2)求關于的表達式,并求出的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】鳳鳴山中學的高中女生體重 (單位:kg)與身高(單位:cm)具有線性相關關系,根據一組樣本數據(),用最小二乘法近似得到回歸直線方程為,則下列結論中不正確的是( )
A.與具有正線性相關關系
B.回歸直線過樣本的中心點
C.若該中學某高中女生身高增加1cm,則其體重約增加0.85kg
D.若該中學某高中女生身高為160cm,則可斷定其體重必為50.29kg.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓C的兩個頂點分別為A(2,0),B(2,0),焦點在x軸上,離心率為.
(Ⅰ)求橢圓C的方程;
(Ⅱ)點D為x軸上一點,過D作x軸的垂線交橢圓C于不同的兩點M,N,過D作AM的垂線交BN于點E.求證:△BDE與△BDN的面積之比為4:5.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com