【題目】如圖,已知為拋物線上在軸下方的一點(diǎn),直線,,與拋物線在第一象限的交點(diǎn)從左到右依次為,,,與軸的正半軸分別相交于點(diǎn),,,且,直線的方程為.
(1)當(dāng)時(shí),設(shè)直線,的斜率分別為,,證明:;
(2)求關(guān)于的表達(dá)式,并求出的取值范圍.
【答案】(1)見解析.(2) .
【解析】
(1)由題意首先確定點(diǎn)P的坐標(biāo),然后設(shè)出點(diǎn)M,N的坐標(biāo),利用斜率公式求得斜率即可證得題中的等式;
(2)由題意首先確定點(diǎn)A和點(diǎn)C的坐標(biāo),然后求解點(diǎn)到直線的距離和點(diǎn)到直線的距離,最后結(jié)合幾何圖形的性質(zhì)得到面積比值的函數(shù),由函數(shù)的定義域和函數(shù)的值域可確定的取值范圍.
(1)由解得或,則.
易知,由題意可得,(,且),
所以,,
所以,.
所以.
(2)由(1)得,當(dāng)時(shí),直線的方程為,
當(dāng)時(shí),直線的方程為,適合上式,
所以直線的方程為.
由消去得,
所以,解得,所以點(diǎn)的坐標(biāo)為.
由(1)得,直線的方程為,
由消去得,
所以,解得,所以點(diǎn)的坐標(biāo)為.
則點(diǎn)到直線的距離為 ,
點(diǎn)到直線的距離為 ,
所以 .
因?yàn)?/span>,所以,所以,
所以的取值范圍是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】袋子中有四個(gè)小球,分別寫有“美、麗、華、一”四個(gè)字,有放回地從中任取一個(gè)小球,直到“華”“一”兩個(gè)字都取到就停止,用隨機(jī)模擬的方法估計(jì)恰好在第四次停止的概率.利用計(jì)算機(jī)隨機(jī)產(chǎn)生0到3之間取整數(shù)值的隨機(jī)數(shù),分別用0,1,2,3代表“美、麗、華、一”這四個(gè)字,以每四個(gè)隨機(jī)數(shù)為一組,表示取球四次的結(jié)果,經(jīng)隨機(jī)模擬產(chǎn)生了以下20組隨機(jī)數(shù):
2323 3211 2303 1233 0211 1322 2201 2213 0012 1231
2312 1300 2331 0312 1223 1031 3020 3223 3301 3212
由此可以估計(jì),恰好第四次就停止的概率為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】知函數(shù).
(1)當(dāng)時(shí),求的單調(diào)區(qū)間;
(2)設(shè)函數(shù),若是的唯一極值點(diǎn),求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中.
(1)求函數(shù)的單調(diào)區(qū)間;
(2)討論函數(shù)的零點(diǎn)個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在幾何體中,底面四邊形是邊長(zhǎng)為4的菱形,,,,平面,且,.
(1)證明:平面平面;
(2)求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某農(nóng)科所對(duì)冬季晝夜溫差大小與某反季節(jié)大豆新品種發(fā)芽多少之間進(jìn)行分析研究,他們分別記錄了12月1日至12月5日的每天晝夜溫差與實(shí)驗(yàn)室每天每100棵種子中的發(fā)芽數(shù),得到如下資料:
日期 | 12月1日 | 12月2日 | 12月3日 | 12月4日 | 12月5日 |
溫差攝氏度 | 10 | 11 | 13 | 12 | 8 |
發(fā)芽顆 | 23 | 25 | 30 | 26 | 16 |
該農(nóng)科所確定的研究方案是:先從這5組數(shù)據(jù)中選取3組數(shù)據(jù)求線性回歸方程,再用剩下的2組數(shù)據(jù)進(jìn)行檢驗(yàn).
(1)若選取的3組數(shù)據(jù)恰好是連續(xù)天的數(shù)據(jù)(表示數(shù)據(jù)來自互不相鄰的三天),求的分布列及期望:
(2)根據(jù)12月2日至4日數(shù)據(jù),求出發(fā)芽數(shù)關(guān)于溫差的線性回歸方程.由所求得線性回歸方稻得到的估計(jì)數(shù)據(jù)與剩下的檢驗(yàn)數(shù)據(jù)的誤差均不超過2顆,則認(rèn)為得到的線性回歸方程是可靠的,試問所得的線性回歸方程是否可靠?
附:參考公式:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)在,很多人都喜歡騎“共享單車”,但也有很多市民并不認(rèn)可.為了調(diào)查人們對(duì)這種交通方式的認(rèn)可度,某同學(xué)從交通擁堵不嚴(yán)重的A城市和交通擁堵嚴(yán)重的B城市分別隨機(jī)調(diào)查了20名市民,得到了一個(gè)市民是否認(rèn)可的樣本,具體數(shù)據(jù)如下列聯(lián)表:
附:,.
根據(jù)表中的數(shù)據(jù),下列說法中,正確的是( )
A. 沒有95% 以上的把握認(rèn)為“是否認(rèn)可與城市的擁堵情況有關(guān)”
B. 有99% 以上的把握認(rèn)為“是否認(rèn)可與城市的擁堵情況有關(guān)”
C. 可以在犯錯(cuò)誤的概率不超過0.01的前提下認(rèn)為“是否認(rèn)可與城市的擁堵情況有關(guān)”
D. 可以在犯錯(cuò)誤的概率不超過0.025的前提下認(rèn)為“是否認(rèn)可與城市的擁堵情況有關(guān)”
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)代社會(huì),“鼠標(biāo)手”已成為常見病,一次實(shí)驗(yàn)中,10名實(shí)驗(yàn)對(duì)象進(jìn)行160分鐘的連續(xù)鼠標(biāo)點(diǎn)擊游戲,每位實(shí)驗(yàn)對(duì)象完成的游戲關(guān)卡一樣,鼠標(biāo)點(diǎn)擊頻率平均為180次/分鐘,實(shí)驗(yàn)研究人員測(cè)試了實(shí)驗(yàn)對(duì)象使用鼠標(biāo)前后的握力變化,前臂表面肌電頻率()等指標(biāo).
(I)10 名實(shí)驗(yàn)對(duì)象實(shí)驗(yàn)前、后握力(單位:)測(cè)試結(jié)果如下:
實(shí)驗(yàn)前:346,357,358,360,362,362,364,372,373,376
實(shí)驗(yàn)后:313,321,322,324,330,332,334,343,350,361
完成莖葉圖,并計(jì)算實(shí)驗(yàn)后握力平均值比實(shí)驗(yàn)前握力的平均值下降了多少?
(Ⅱ)實(shí)驗(yàn)過程中測(cè)得時(shí)間(分)與10名實(shí)驗(yàn)對(duì)象前臂表面肌電頻率()的中的位數(shù)()的九組對(duì)應(yīng)數(shù)據(jù)為,.建立關(guān)于時(shí)間的線性回歸方程;
(Ⅲ)若肌肉肌電水平顯著下降,提示肌肉明顯進(jìn)入疲勞狀態(tài),根據(jù)(Ⅱ)中9組數(shù)據(jù)分析,使用鼠標(biāo)多少分鐘就該進(jìn)行休息了?
參考數(shù)據(jù):;
參考公式:回歸方程中斜率和截距的最小二乘估計(jì)公式分別為:
,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】畫糖是一種以糖為材料在石板上進(jìn)行造型的民間藝術(shù),常見于公園與旅游景點(diǎn).某師傅制作了一種新造型糖畫,為了進(jìn)行合理定價(jià)先進(jìn)性試銷售,其單價(jià)(元)與銷量(個(gè))相關(guān)數(shù)據(jù)如下表:
(1)已知銷量與單價(jià)具有線性相關(guān)關(guān)系,求關(guān)于的線性相關(guān)方程;
(2)若該新造型糖畫每個(gè)的成本為元,要使得進(jìn)入售賣時(shí)利潤(rùn)最大,請(qǐng)利用所求的線性相關(guān)關(guān)系確定單價(jià)應(yīng)該定為多少元?(結(jié)果保留到整數(shù))
參考公式:線性回歸方程中斜率和截距最小二乘法估計(jì)計(jì)算公式:
.參考數(shù)據(jù):.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com