【題目】一張坐標(biāo)紙上涂著圓E 及點(diǎn)P10),折疊此紙片,使P與圓周上某點(diǎn)P'重合,每次折疊都會(huì)留下折痕,設(shè)折痕與直線EP'交于點(diǎn)M

1)求的軌跡的方程;

2)直線C的兩個(gè)不同交點(diǎn)為A,B,且l與以EP為直徑的圓相切,若,求ABO的面積的取值范圍.

【答案】(1);(2).

【解析】試題分析: 折痕為的垂直平分線,則,推導(dǎo)出的軌跡是以, 為焦點(diǎn)的橢圓,且,由此能求出的軌跡的方程;

為直徑的圓相切,從而,由,得

,由此利用根的判別式,韋達(dá)定理,向量的數(shù)量積,弦長(zhǎng)公式,三角形面積公式,能求出的面積的取值范圍。

解析:(1)折痕為PP的垂直平分線,則|MP|=|MP′|,由題意知圓E的半徑為2,

|ME|+|MP|=|ME|+|MP′|=2|EP|,

E的軌跡是以E、P為焦點(diǎn)的橢圓,且a=,c=1,

b2=a2c2=1, M的軌跡C的方程為

2l與以EP為直徑的圓x2+y2=1相切,

Ol即直線AB的距離:=1,即m2=k2+1,

,消去y,得(1+2k2x2+4kmx+2m2﹣2=0,

∵直線l與橢圓交于兩個(gè)不同點(diǎn),

∴△=16k2m2﹣81+2k2)(m2﹣1=8k20k20,

設(shè)Ax1,y1),Bx2,y2),則,

y1y2=kx1+m)(kx2+m=k2x1x2+kmx1+x2+m2=,

=x1x2+y1y2=,,

==

設(shè)μ=k4+k2,則,=,,

SAOB關(guān)于μ[2]單調(diào)遞增,

,∴△AOB的面積的取值范圍是[,]

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某工廠為提高生產(chǎn)效率,開展技術(shù)創(chuàng)新活動(dòng),提出了完成某項(xiàng)生產(chǎn)任務(wù)的兩種新的生產(chǎn)方式.為比較兩種生產(chǎn)方式的效率,選取40名工人,將他們隨機(jī)分成兩組,每組20人,第一組工人用第一種生產(chǎn)方式,第二組工人用第二種生產(chǎn)方式.根據(jù)工人完成生產(chǎn)任務(wù)的工作時(shí)間(單位:min)繪制了如下莖葉圖:

(1)根據(jù)莖葉圖判斷哪種生產(chǎn)方式的效率更高?并說(shuō)明理由;

(2)求40名工人完成生產(chǎn)任務(wù)所需時(shí)間的中位數(shù),并將完成生產(chǎn)任務(wù)所需時(shí)間超過(guò)和不超過(guò)的工人數(shù)填入下面的列聯(lián)表:

超過(guò)

不超過(guò)

第一種生產(chǎn)方式

第二種生產(chǎn)方式

(3)根據(jù)(2)中的列聯(lián)表,能否有99%的把握認(rèn)為兩種生產(chǎn)方式的效率有差異?

附:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù),曲線在點(diǎn)處的切線方程為.

1)求的解析式;

(2)證明:曲線上任一點(diǎn)處的切線與直線和直線所圍成的三角形面積為定值,并求此定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在平面直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),在以為極點(diǎn),軸的正半軸為極軸的極坐標(biāo)系中,曲線是圓心在極軸上,且經(jīng)過(guò)極點(diǎn)的圓.已知曲線上的點(diǎn)對(duì)應(yīng)的參數(shù),射線與曲線交于點(diǎn).

(Ⅰ)求曲線,的標(biāo)準(zhǔn)方程;

(Ⅱ)若點(diǎn),在曲線上,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)為奇質(zhì)數(shù),、是小于的正整數(shù).證明:的充分必要條件是,對(duì)任何小于的正整數(shù),均有等于正奇數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】中國(guó)古代十進(jìn)制的算籌計(jì)數(shù)法,在數(shù)學(xué)史上是一個(gè)偉大的創(chuàng)造,算籌實(shí)際上是一根根同長(zhǎng)短的小木棍.如圖,是利用算籌表示數(shù)的一種方法.例如:3可表示為“”,26可表示為“”.現(xiàn)有6根算籌,據(jù)此表示方法,若算籌不能剩余,則可以用9數(shù)字表示兩位數(shù)的個(gè)數(shù)為  

A.13B.14C.15D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著人民生活水平的提高,對(duì)城市空氣質(zhì)量的關(guān)注度也逐步增大,圖2是某城市1月至8月的空氣質(zhì)量檢測(cè)情況,圖中一、二、三、四級(jí)是空氣質(zhì)量等級(jí), 一級(jí)空氣質(zhì)量最好,一級(jí)和二級(jí)都是質(zhì)量合格天氣,下面四種說(shuō)法正確的是( )

①1月至8月空氣合格天數(shù)超過(guò)20天的月份有5個(gè)

②第二季度與第一季度相比,空氣達(dá)標(biāo)天數(shù)的比重下降了

③8月是空氣質(zhì)量最好的一個(gè)月

④6月份的空氣質(zhì)量最差

A. ①②③ B. ①②④ C. ①③④ D. ②③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】近年空氣質(zhì)量逐步惡化,霧霾天氣現(xiàn)象出現(xiàn)增多,大氣污染危害加重.大氣污染可引起心悸、呼吸困難等心肺疾病.為了解某市心肺疾病是否與性別有關(guān),在某醫(yī)院隨機(jī)對(duì)心肺疾病入院的人進(jìn)行問(wèn)卷調(diào)查,得到了如下的列聯(lián)表:

患心肺疾病

不患心肺疾病

合計(jì)

合計(jì)

(1)用分層抽樣的方法在患心肺疾病的人群中抽人,其中男性抽多少人?

(2)在上述抽取的人中選人,求恰好有名女性的概率;

(3)為了研究心肺疾病是否與性別有關(guān),請(qǐng)計(jì)算出統(tǒng)計(jì)量,你有多大把握認(rèn)為心肺疾病與性別有關(guān)?

下面的臨界值表供參考:

參考公式: ,其中.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖為我國(guó)數(shù)學(xué)家趙爽(約3世紀(jì)初)在為《周髀算經(jīng)》作注時(shí)驗(yàn)證勾股定理的示意圖,現(xiàn)在提供5種顏色給其中5個(gè)小區(qū)域涂色,規(guī)定每個(gè)區(qū)域只涂一種顏色,相鄰區(qū)域顏色不相同,則不同的涂色方案共有(

A.360B.720C.480D.420

查看答案和解析>>

同步練習(xí)冊(cè)答案