10.若不等式x2+ax+1≥0對一切x∈(0,$\frac{3}{2}}$]成立,則a的最小值是-2.

分析 根據(jù)題意,問題轉化為a≥-x-$\frac{1}{x}$;即求x∈(0,$\frac{3}{2}}$]時-(x+$\frac{1}{x}$)的最大值即可.

解答 解:不等式x2+ax+1≥0對一切x∈(0,$\frac{3}{2}}$]成立,
∴ax≥-x2-1,
即a≥-x-$\frac{1}{x}$=-(x+$\frac{1}{x}$);
由x∈(0,$\frac{3}{2}}$],
∴x+$\frac{1}{x}$≥2$\sqrt{x•\frac{1}{x}}$=2,當且僅當x=1時“=”成立,
即-(x+$\frac{1}{x}$)的最大值是-2;
∴a的最小值是-2.
故答案為:-2.

點評 本題考查了轉化法與轉化思想的應用問題,也考查了一元二次不等式的應用問題,是中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

20.設命題p:函數(shù)f(x)=lg(x2+ax+1)的定義域為R;命題q:函數(shù)f(x)=x2-2ax-1在(-∞,-1]上單調遞減.若命題“p∨q”為真,“p∧q”為假,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.已知變量x,y滿足約束條件$\left\{\begin{array}{l}x+y≥2\\ x-y≤2\\ 0≤y≤3\end{array}\right.$,若目標函數(shù)z=y-ax僅在點(5,3)處取得最小值,則實數(shù)a的取值范圍為(1,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.某校教職工年齡結構分布如表,為了該校未來的發(fā)展,學校決定從這些教職工中采用分層抽樣方法隨機抽取50人參與“教代會”,則應從35歲以下教職工中抽取的人數(shù)為( 。
年齡(歲)35歲及以下(35,50)50歲以上
人數(shù)(人)220180100
A.22B.18C.10D.5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知定點A(7,0),B(1,0),平面上動點P到A點的距離與到B點的距離之比為λ(λ>0,且為常數(shù))
(I)求動點P的軌跡方程,并說明方程表示的曲線;
(II)當λ=2時,記P點的軌跡與y軸交于M、N兩點,若過點P做圓C:(x-1)2+y2=1的兩條切線l1、l2分別交y軸于H、K兩點,在構成三角形的條件下,求$\frac{{{S_△}_{PMN}}}{{{S_{△PHK}}}}$得最大值,并指出取得最大值時的P點坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.在某次測量中得到的A樣本的莖葉圖如圖所示,則該樣本的中位數(shù)、眾數(shù)、極差分別是(  )
A.47,45,56B.46,45,53C.45,47,53D.46,45,56

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.如圖,長為4的線段AB的兩個端點A和B分別在x軸正半軸和y正半軸上滑動,T為AB的中點,∠OAB=75°,當線段AB滑動到A1B1位置時,∠OA1B1=45°.線段在滑動時點T運動到T1點,則點T運動的路程為$\frac{π}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.已知集合A={x|$\frac{1}{2}$≤2x≤4},B={x|lg(x-1)≤1},則A∩B=(1,2].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.若函數(shù)g(x),h(x)都是奇函數(shù),f(x)=ag(x)+bh(x)+2(a,b∈R,a2+b2≠0)在(0,+∞)上有最大值6,則定義在(-∞,0)上的函數(shù)f(x)有( 。
A.最小值-6B.最大值-6C.最小值-2D.最小值-4

查看答案和解析>>

同步練習冊答案