3.在△ABC中,a=3,b=4,sinA=$\frac{1}{3}$,則sinB=( 。
A.$\frac{1}{4}$B.$\frac{5}{9}$C.$\frac{1}{12}$D.$\frac{4}{9}$

分析 由已知利用正弦定理即可計算得解.

解答 解:∵a=3,b=4,sinA=$\frac{1}{3}$,
∴sinB=$\frac{b•sinA}{a}$=$\frac{4×\frac{1}{3}}{3}$=$\frac{4}{9}$.
故選:D.

點評 本題主要考查了正弦定理在解三角形中的應用,屬于基礎題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

13.四棱錐P-ABCD中,底面ABCD為矩形,PA⊥平面ABCD,E為PD的中點.
(1)證明:PB∥平面AEC;
(2)設AP=1,AD=$\sqrt{3}$,三棱錐P-ABD的體積V=$\frac{{\sqrt{3}}}{4}$,求二面角D-AE-C的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.定義在(-1,1)上的函數(shù)f(x)滿足:$f(x)-f(y)=f({\frac{x-y}{1-xy}})$,當x∈(-1,0)時,有f(x)>0,且$f({-\frac{1}{2}})=1$.設$m=f({\frac{1}{5}})+f({\frac{1}{11}})+…+f({\frac{1}{{{n^2}+n-1}}}),\;\;n≥2,n∈{N^*}$,則實數(shù)m與-1的大小關(guān)系為( 。
A.m<-1B.m=-1C.m>-1D.不確定

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.下列說法錯誤的是(  )
A.在殘差圖中,殘差點分布的帶狀區(qū)域的寬度越狹窄,其模型擬合的精度越高
B.在線性回歸分析中,回歸直線不一定過樣本點的中心($\overline{x}$,$\overline{y}$)
C.在回歸分析中,R2為0.98的模型比R2為0.80的模型擬合的效果好
D.自變量取值一定時,因變量的取值帶有一定隨機性的兩個變量之間的關(guān)系叫做相關(guān)關(guān)系

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.已知正方形ABCD的邊長為1,弧BD是以點A為圓心的圓。
(1)在正方形內(nèi)任取一點M,求事件“|AM|≤1”的概率;
(2)用大豆將正方形均勻鋪滿,經(jīng)清點,發(fā)現(xiàn)大豆一共28粒,其中有22粒落在圓中陰影部分內(nèi),請據(jù)此估計圓周率π的近似值(精確到0.01).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.執(zhí)行如圖所示的儲蓄框圖,若輸出S的值為720,則判斷框內(nèi)可填入的條件是k≤7?.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.某幾何體的三視圖(單位:cm)如圖所示,則此幾何體的所有棱長之和為27+$\sqrt{34}$+$\sqrt{41}$cm,體積為20cm3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.已知平面向量$\overrightarrow{a}$=(x1,y1),$\overrightarrow$=(x2,y2),那么$\overrightarrow{a}$•$\overrightarrow$=x1x2+y1y2;空間向量$\overrightarrow{a}$=(x1,y1,z1),$\overrightarrow$=(x2,y2.z2),那么$\overrightarrow{a}$•$\overrightarrow$=x1x2+y1y2+z1z2.由此推廣到n維向量:$\overrightarrow{a}$=(a1,a2,…,an),$\overrightarrow$=(b1,b2,…,bn),那么$\overrightarrow{a}$•$\overrightarrow$=a1b1+a2b2+a3b3+…+anbn..

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.某少數(shù)民族的刺繡有著悠久的歷史,如圖(1)、(2)、(3)、(4)為她們刺繡最簡單的四個圖案,這些圖案都由小正方形構(gòu)成,小正方形數(shù)越多刺繡越漂亮,現(xiàn)按同樣的規(guī)律刺繡(小正方形的擺放規(guī)律相同),設第n個圖形包含f(n)個小正方形.
(1)由圖歸納出f(n)與f(n-1)的關(guān)系式,并求出f(n)表達式;
(2)求證:$\frac{1}{f(1)}$+$\frac{1}{f(2)-1}$+$\frac{1}{f(3)-1}$+…+$\frac{1}{f(n)-1}$$<\frac{3}{2}$.

查看答案和解析>>

同步練習冊答案