A. | 30° | B. | 45° | C. | 60° | D. | 90° |
分析 如圖所示,建立空間直角坐標系.利用向量的夾角公式即可得出.
解答 解:如圖所示,建立空間直角坐標系
不妨設(shè)AB=2,則D(0,0,0),A(2,0,0),M(2,2,1),N(0,1,0),D′(0,0,2).
$\overrightarrow{AM}$=(0,2,1),$\overrightarrow{N{D}^{′}}$=(0,-1,2).
∴cos$<\overrightarrow{AM},\overrightarrow{N{D}^{′}}>$=$\frac{\overrightarrow{AM}•\overrightarrow{N{D}^{′}}}{|\overrightarrow{AM}||\overrightarrow{N{D}^{′}}|}$=0.
∴$<\overrightarrow{AM},\overrightarrow{N{D}^{′}}>$=90°.
故選:D.
點評 本題考查了通過求向量的夾角公式求異面直線的夾角、數(shù)量積運算性質(zhì),考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-∞,$\frac{1}{{e}^{3}}$) | B. | ($\frac{1}{{e}^{3}}$,+∞) | C. | (-∞,$\frac{1}{3e}$) | D. | ($\frac{1}{3e}$,+∞) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $-\frac{1}{2}$ | C. | 1 | D. | -1 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com