分析 把“當n≥2時an=Sn-Sn-1”代入${{S}_{n}}^{2}$=an(Sn-$\frac{1}{2}$)化簡,由等差數列的定義即可證明數列{$\frac{1}{{S}_{n}}$}是等差數列.
解答 證明:∵當n≥2時an=Sn-Sn-1,且${{S}_{n}}^{2}$=an(Sn-$\frac{1}{2}$),
∴${{S}_{n}}^{2}$=(Sn-Sn-1)(Sn-$\frac{1}{2}$ ),
則${{S}_{n}}^{2}$=${{S}_{n}}^{2}$-$\frac{1}{2}$Sn-SnSn-1+$\frac{1}{2}$Sn-1,
即Sn-1-Sn=2SnSn-1,
兩邊同除以SnSn-1 得,$\frac{1}{{S}_{n}}$-$\frac{1}{{S}_{n-1}}$=2,
又a1=1,則$\frac{1}{{S}_{1}}$=1,
∴數列{$\frac{1}{{S}_{n}}$}是以1為首項、以2為公差的等差數列.
點評 本題考查了數列的前n項和與通項的關系,利用等差數列的定義確定等差關系,考查化簡、變形能力.
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 0或5 | B. | 1或3 | C. | 4或6 | D. | 0或2 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | (-∞,-3)∪(1,+∞) | B. | (-∞,-3]∪[1,+∞) | C. | [1,+∞) | D. | [2,+∞) |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com