分析 設(shè)橢圓和雙曲線的半焦距為c,|PF1|=m,|PF2|=n,(m>n),由于△PF1F2是以PF1為底邊的等腰三角形可得m=10,n=2c,由橢圓的定義可得m+n=2a1,由雙曲線的定義可得m-n=2a2,由三角形的兩邊之和大于第三邊,可得2c+2c=4c>10,可得$\frac{5}{2}$<c<5.由離心率公式可得e1•e2=$\frac{c}{{a}_{1}}$$•\frac{c}{{a}_{2}}$,即可得出.
解答 解:設(shè)橢圓和雙曲線的半焦距為c,|PF1|=m,|PF2|=n,(m>n),
由于△PF1F2是以PF1為底邊的等腰三角形.若|PF1|=10,
即有m=10,n=2c,
由橢圓的定義可得m+n=2a1,
由雙曲線的定義可得m-n=2a2,
即有a1=5+c,a2=5-c,(c<5),
再由三角形的兩邊之和大于第三邊,可得2c+2c=4c>10,
則c>$\frac{5}{2}$,即有$\frac{5}{2}$<c<5.
由離心率公式可得e1•e2=$\frac{c}{{a}_{1}}$$•\frac{c}{{a}_{2}}$=$\frac{{c}^{2}}{25-{c}^{2}}$=$\frac{1}{\frac{25}{{c}^{2}}-1}$,
由于1<$\frac{25}{{c}^{2}}$<4,則$\frac{1}{\frac{25}{{c}^{2}}-1}$$>\frac{1}{3}$.
則e1•e2+1$>\frac{1}{3}$+1.
∴e1•e2+1的取值范圍為($\frac{4}{3}$,+∞).
故答案為:($\frac{4}{3}$,+∞).
點(diǎn)評 本題考查了橢圓與雙曲線的標(biāo)準(zhǔn)方程及其性質(zhì)、離心率計算公式、不等式的性質(zhì),考查了推理能力與計算能力,屬于難題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ω=2,φ=$\frac{π}{4}$ | B. | ω=2,φ=$\frac{π}{2}$ | C. | ω=1,φ=$\frac{π}{2}$ | D. | ω=1,φ=$\frac{π}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{1+3\sqrt{5}}}{8}$ | B. | $\frac{{1+5\sqrt{3}}}{8}$ | C. | $\frac{{1-3\sqrt{5}}}{8}$ | D. | $\frac{{1-5\sqrt{3}}}{8}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com