12.已知a,b∈R+,求證:(a+$\frac{1}{a}$)(b+$\frac{1}$)≥4,并說明等號成立的條件.

分析 運(yùn)用二元均值不等式:a+b≥2$\sqrt{ab}$(當(dāng)且僅當(dāng)a=b時(shí)取得等號),再由可乘性即可得到證明.

解答 證明:a,b∈R+,可得a+$\frac{1}{a}$≥2$\sqrt{a•\frac{1}{a}}$=2,
b+$\frac{1}$≥2$\sqrt{b•\frac{1}}$=2,
可得(a+$\frac{1}{a}$)(b+$\frac{1}$)≥4,
當(dāng)且僅當(dāng)a=b=1時(shí),取得等號.

點(diǎn)評 本題考查不等式的證明,注意運(yùn)用二元均值不等式,結(jié)合不等式性質(zhì),考查推理能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知a、b、c>1,且a+b+c=9.證明:$\sqrt{ab+bc+ca}$≤$\sqrt{a}$+$\sqrt$+$\sqrt{c}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.設(shè)拋物線y2=4x的焦點(diǎn)為F,過點(diǎn)M(2,0)的直線與拋物線相交于A,B兩點(diǎn),與拋物線的準(zhǔn)線相交于點(diǎn)C,$|{BF}|=\frac{3}{2}$,則△BCF與△ACF的面積的比值為( 。
A.1:4B.1:5C.1:6D.1:7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.如圖,直線l過拋物線y2=4x的交點(diǎn)F且分別交拋物線及其準(zhǔn)線于A,B,C,若$\frac{BF}{BC}=\frac{{\sqrt{5}}}{5}$,則|AB|等于( 。
A.5B.6C.$4\sqrt{3}$D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知拋物線y2=2px(p>0)存在關(guān)于直線x+y=1對稱的相異兩點(diǎn)A、B,則實(shí)數(shù)p的取值范圍是( 。
A.(0,1)B.(0,+∞)C.(0,$\frac{2}{3}$]D.(0,$\frac{2}{3}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.設(shè)正實(shí)數(shù)x,y,z,w滿足2012x2=2013y2=2014z2=2015w2,$\frac{1}{x}$+$\frac{1}{y}$+$\frac{1}{z}$+$\frac{1}{w}$=1,試求$\sqrt{2012x+2013y+2014z+2015w}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知a>0且a≠1,若函數(shù)f(x)=loga(ax2-2x+3)在[$\frac{1}{2}$,2]上是增函數(shù),則a的取值范圍是($\frac{1}{4}$,$\frac{1}{2}$]∪[2,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.圖甲是應(yīng)用分形幾何學(xué)做出的一個(gè)分形規(guī)律圖,按照圖甲所示的分形規(guī)律可得圖乙所示的一個(gè)樹形圖.

我們采用“坐標(biāo)”來表示圖乙各行中的白圈、黑圈的個(gè)數(shù)(橫坐標(biāo)表示白圈的個(gè)數(shù),縱坐標(biāo)表示黑圈的個(gè)數(shù)).比如第一行記為(0,1),第二行記為(1,2),第三行記為(4,5),照此下去,第四行中白圈與黑圈的“坐標(biāo)”為(13,14),第n(n∈N*)行中白圈與黑圈的“坐標(biāo)”為($\frac{{3}^{n-1}-1}{2}$,$\frac{{3}^{n-1}+1}{2}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知函數(shù)f(x)=ax+1-2(a>0且a≠1)的圖象恒過定點(diǎn)A,設(shè)拋物線E:y2=4x上任意一點(diǎn)M到準(zhǔn)線l的距離為d,則d+|MA|的最小值為( 。
A.5B.$\sqrt{10}$C.$\sqrt{5}$D.$\sqrt{2}$

查看答案和解析>>

同步練習(xí)冊答案