已知直線x-y=0與拋物線x2=2py交于A、B兩點(diǎn),若點(diǎn)P(2,2)為AB中點(diǎn),求拋物線方程.
考點(diǎn):拋物線的簡單性質(zhì),拋物線的標(biāo)準(zhǔn)方程
專題:圓錐曲線的定義、性質(zhì)與方程
分析:設(shè)A(x1,y1),B(x2,y2).由于
x
2
1
=2py1
,
x
2
2
=2py2
,可得(x1+x2)(x1-x2)=2p(y1-y2).再利用斜率計算公式與中點(diǎn)坐標(biāo)公式即可得出.
解答: 解:設(shè)A(x1,y1),B(x2,y2).
x
2
1
=2py1
,
x
2
2
=2py2
,
∴(x1+x2)(x1-x2)=2p(y1-y2).
y1-y2
x1-x2
=1,x1+x2=2×2,
∴4=2p,解得p=2.
∴拋物線的方程為:x2=4y.
點(diǎn)評:本題考查了“點(diǎn)差法”、斜率計算公式與中點(diǎn)坐標(biāo)公式,考查了推理能力與計算能力,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)[m]表示不超過實數(shù)m的最大整數(shù),則在直角坐標(biāo)平面xOy上,則滿足[x]2+[y]2=50的點(diǎn)P(x,y)所成的圖形面積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ex,(x∈R)
(1)求f(x)在點(diǎn)(1,e)處的切線方程;
(2)證明:曲線y=f(x)與曲線y=
1
2
x2+x+1有唯一公共點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知cosφ=-
3
3
,180°<φ<270°,求sin2φ,cos2φ,tan2φ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=
2x2
1-x
+lg(3x+1)的定義域為( 。
A、(-
1
3
,1)
B、(-
1
3
,
1
3
C、(-
1
3
,+∞)
D、(-∞,
1
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在空間直角坐標(biāo)系中,已知△ABC頂點(diǎn)坐標(biāo)分別是A(-1,2,3),B(2,-2,3),C(
1
2
,
5
2
,3).求證:△ABC是直角三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

當(dāng)(
1
2
x+1>(
1
2
 -x2+2x+3時,則y=2-x的值域為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在三棱錐P-ABC中,PA⊥底面ABC,AD⊥平面PBC,其垂足D落在直線PB上,
(1)求證:BC⊥PB;
(2)若AD=
3
,AB=BC=2,Q為AC的中點(diǎn),求二面角Q-PB-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若正數(shù)a,b,c成公差不為零的等差數(shù)列,則( 。
A、lga,lgb,lgc成等差數(shù)列
B、lga,lgb,lgc成等比數(shù)列
C、2a,2b,2c成等差數(shù)列
D、2a,2b,2c成等比數(shù)列

查看答案和解析>>

同步練習(xí)冊答案