14.已知函數(shù)f(x)=x4+ax3+2x2+b(x∈R,a,b∈R),若函數(shù)f(x)僅在x=0處有極值,則實(shí)數(shù)a的取值范圍為(  )
A.(-$\frac{8}{3}$,$\frac{8}{3}$)B.[-$\frac{8}{3}$,$\frac{8}{3}$]C.(-∞,-$\frac{8}{3}$)∪($\frac{8}{3}$,+∞)D.[-∞,$\frac{8}{3}$]∪[$\frac{8}{3}$,+∞]

分析 首先對f(x)求導(dǎo),函數(shù)f(x)僅在x=0處有極值,可得知4x2+3ax+4=0無解或只有唯一一個(gè)解.

解答 解:對f(x)求導(dǎo):
f'(x)=4x3+3ax2+4x
=x(4x2+3ax+4),
令f'(x)=0⇒x=0 或 4x2+3ax+4=0
函數(shù)f(x)僅在x=0處有極值,可得知4x2+3ax+4=0無解或只有唯一一個(gè)解;
故△=9a2-64≤0⇒-$\frac{8}{3}$≤a≤$\frac{8}{3}$.
故選:B.

點(diǎn)評 本題主要考查了導(dǎo)數(shù)與極值的關(guān)系,以及一元二次函數(shù)零點(diǎn)分布,屬基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知直線l1:2x-y-3=0,l2:x-my+1-3m=0,m∈R.
(1)若l1∥l2,求實(shí)數(shù)m的值;
(2)若l2在兩坐標(biāo)軸上有截距相等,求直線l2的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=xlnx-x+1,
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)求函數(shù)的最值;
(3)若xf′(x)≤x2+ax,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.函數(shù)y=3x-x3,x∈[-1,$\sqrt{3}$]的值域是[-2,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.給出An=2n,Bn=n2+1,n∈N+,現(xiàn)比較二者的大。
(1)分別取n=1,2,3,4,5加以試驗(yàn),
(2)①根據(jù)試驗(yàn)結(jié)果猜測一個(gè)一般性的結(jié)論;
②用數(shù)學(xué)歸納法證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.集合A={x∈Z||x|≤1}的子集個(gè)數(shù)為( 。
A.2B.4C.6D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.函數(shù)f(x)=$\frac{{{{(x-2)}^0}}}{{\sqrt{-{x^2}+4x-3}}}$的定義域是(1,2)∪(2,3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.若關(guān)于x,y的不等式組$\left\{\begin{array}{l}{x+y-1≥0}\\{x-2≤0}\\{ax-y+1≥0}\end{array}\right.$(a>0)所表示的平面區(qū)域的面積為4,則a的值為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知a>0且曲線y=$\sqrt{x}$、x=a與y=0所圍成的封閉區(qū)域的面積為a2,則a=$\frac{4}{9}$.

查看答案和解析>>

同步練習(xí)冊答案