【題目】在某批次的某種燈泡中,隨機地抽取個樣品,并對其壽命進行追蹤調查,將結果列成頻率分布表如下.根據(jù)壽命將燈泡分成優(yōu)等品、正品和次品三個等級,其中壽命大于或等于天的燈泡是優(yōu)等品,壽命小于天的燈泡是次品,其余的燈泡是正品.

壽命(天)

頻數(shù)

頻率

合計

Ⅰ)根據(jù)頻率分布表中的數(shù)據(jù),寫出, 的值.

Ⅱ)某人從燈泡樣品中隨機地購買了個,求個燈泡中恰有一個是優(yōu)等品的概率.

Ⅲ)某人從這個批次的燈泡中隨機地購買了個進行使用,若以上述頻率作為概率,用表示此人所購買的燈泡中次品的個數(shù),求的分布列和數(shù)學期望.

【答案】, .(.(見解析.

【解析】試題分析:1)根據(jù)頻數(shù)之和為100以及頻率之和為1分別求出 的值;(2)先確定抽取一個優(yōu)等品的概率為個燈泡中恰有個是優(yōu)等品的概率是

3)先確定隨機變量的可能取值為, , , ,,根據(jù)題中條件確定在不同取值下的概率,并列出相應的分布列,求出數(shù)學期望.

試題解析:)由頻率分布表的數(shù)據(jù)可知: ,

)由表中數(shù)據(jù)可知,從燈泡樣品中隨機抽取一個優(yōu)等品的概率為,

個燈泡中恰有個是優(yōu)等品的概率是

的所有取值為 , ,

由題意,夠買一個燈泡,且這個燈泡是次品的概率為,從這次批次燈泡中購買個,可看成次獨立重復試驗,

所以:

,

所以隨機變量的分布列為:

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,飛鏢的標靶呈圓盤形,圓盤被10等分,按如圖所示染色為Ⅰ、Ⅱ、Ⅲ三部分,某人依次將若干支飛鏢投向標靶,如果每次投射都是相互獨立的.

(1)如果他投向標靶的飛鏢恰有2支且都擊中標靶,同時每支飛鏢擊中標靶的任意位置都是等可能的,求“第Ⅰ部分被擊中2次或第Ⅱ部分被擊中2次”的概率;

(2)如果他投向標靶的飛鏢恰有4支,且他投射1支飛鏢,擊中標靶的概率為表示標靶被擊中的次數(shù),求的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù), ,其中為自然對數(shù)的底數(shù).

(Ⅰ)討論函數(shù)的單調性.

(Ⅱ)試判斷曲線是否存在公共點并且在公共點處有公切線.若存在,求出公切線的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓Cx2+(ya)2=4,點A(1,0).

(1)當過點A的圓C的切線存在時,求實數(shù)a的取值范圍;

(2)設AMAN為圓C的兩條切線,MN為切點,當MN時,求MN所在直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在長方體ABCD﹣A1B1C1D1中,AA1=1,AB=AD=2,E、F分別是AB、BC的中點,證明A1、C1、F、E四點共面,并求直線CD1與平面A1C1FE所成的角的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】O為坐標原點,動點M在橢圓C上,過Mx軸的垂線,垂足為N,點P滿足.

1)求點P的軌跡方程;

2)設點在直線上,且.證明:過點P且垂直于OQ的直線C的左焦點F.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某幾何體的三視圖如圖所示,當xy取得最大值時,該幾何體的體積是________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中, 是等邊三角形, 的中點,四邊形為直角梯形, .

1)求證:平面平面;

2)求四棱錐的體積;

3)在棱上是否存在點,使得平面?說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知為函數(shù)的導函數(shù),且.

(1)判斷函數(shù)的單調性;

(2)若,討論函數(shù)零點的個數(shù).

查看答案和解析>>

同步練習冊答案