17.在半徑為2的圓內(nèi)的一條直徑上任取一點(diǎn),過這個(gè)點(diǎn)作垂直該直徑的弦,則弦長(zhǎng)超過圓內(nèi)接正三角形邊長(zhǎng)的概率是(  )
A.$\frac{1}{3}$B.$\frac{{\sqrt{3}}}{4}$C.$\frac{1}{2}$D.$\frac{{\sqrt{3}}}{2}$

分析 由題意可得:要使弦長(zhǎng)大于CD的長(zhǎng),就必須使圓心O到弦的距離小于|OM|,即可得出結(jié)論.

解答 解:如圖示:

圓的半徑為2,設(shè)圓心為O,
AB為圓的一條直徑,
CD為垂直于AB的一條弦,垂足為M,
若CD為圓內(nèi)接正三角形的一條邊,
則O到CD的距離為1,
設(shè)EF為與CD平行且到圓心O距離為1的弦,
交直徑AB于點(diǎn)N,所以當(dāng)過AB上的點(diǎn)且垂直于AB的弦的長(zhǎng)度超過CD時(shí),
該點(diǎn)在線段MN上移動(dòng),所以所求概率P=$\frac{1}{2}$,
故選:C.

點(diǎn)評(píng) 本題主要考查幾何概型概率的計(jì)算,是簡(jiǎn)單題,確定得到各自的幾何度量是解決問題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知f(x)=mx3+nx2+t的圖象經(jīng)過點(diǎn)(0,1),且在x=1處的切線方程是y=x-2.
(1)求y=f(x)的解析式;
(2)求y=f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.在一住宅小區(qū)里,有一片空地,這塊空地可能有兩種情況:
(1)是半徑為10m的半圓;
(2)是半徑為10m,圓心角為60°的扇形;現(xiàn)在要在這塊空地里種植一塊矩形的草皮,使得其一邊在半徑上,應(yīng)如何設(shè)計(jì)使得草皮面積最大?并求出面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.在半徑為1的圓中隨機(jī)地撒一大把豆子,則豆子落在圓內(nèi)接正方形中的概率為(  )
A.$\frac{2}{π}$B.$\frac{1}{π}$C.$\frac{{\sqrt{2}}}{π}$D.$\frac{3}{π}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知元素a∈{0,1,2,3},且a∉{0,1,2},則a的值為(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.寫出下列命題的“¬p”命題:
(1)正方形的四邊相等
(2)平方和為0的兩個(gè)實(shí)數(shù)都為0
(3)若△ABC是銳角三角形,則△ABC的任何一個(gè)內(nèi)角是銳角
(4)若abc=0,則a,b,c中至少有一個(gè)為0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.如圖,長(zhǎng)方體ABCD-A′B′C′D′中,AD=AA′=1,AB=2,點(diǎn)E是AB的中點(diǎn).
(1)證明:BD′∥平面A′DE;
(2)證明:D′E⊥A′D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.四棱錐P-ABCD中,側(cè)棱PD⊥底面ABCD,底面ABCD是直角梯形,AB∥DC,AD⊥DC,且AB=AD=1,PD=DC=2,E是CD的中點(diǎn).
(Ⅰ)求異面直線AE與PC所成的角;
(Ⅱ)線段PB上是否存在一點(diǎn)Q,使得PC⊥平面ADQ?若存在,求出$\frac{PB}{QB}$的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.若f′(x0)=-3,則$\lim_{h→0}\frac{{f({x_0}-3h)-f({x_0}+h)}}{2h}$=(  )
A.-3B.6C.-6D.12

查看答案和解析>>

同步練習(xí)冊(cè)答案