1.已知二次函數(shù)y=f(x)滿足f(x)=f(4-x),且方程f(x)=0有兩個實根x1,x2,那么x1+x2=4.

分析 根據(jù)二次函數(shù)的圖象的特點和所給的抽象函數(shù)式的意義,知道函數(shù)圖象是關(guān)于x=2對稱,又有函數(shù)與x軸的兩個交點也是關(guān)于對稱軸對稱,得到結(jié)果.

解答 解:∵二次函數(shù)y=f(x)滿足f(x)=f(4-x),
∴函數(shù)的圖象關(guān)于x=2對稱,
∵f(x)=0有兩個實根x1、x2
且這兩個實根關(guān)于對稱軸對稱,
∴x1+x2=2×2=4,
故答案為:4.

點評 本題考查函數(shù)的圖象,考查二次函數(shù)的性質(zhì),考查對于抽象函數(shù)式的理解,本題是一個運算量非常小的題目,是一個基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.證明:三點(1,1)、(-1,-1)和(-$\sqrt{3}$,$\sqrt{3}$)為正三角形的頂點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.如果函數(shù)y=f(x)的導(dǎo)函數(shù)f′(x)的圖象如圖所示,給出下列判斷:
①函數(shù)y=f(x)在區(qū)間$(-3,-\frac{1}{2})$內(nèi)單調(diào)遞增;
②函數(shù)y=f(x)在區(qū)間(4,5)內(nèi)單調(diào)遞增;
③函數(shù)y=f(x)的最小值是f(-2)和f(4)中較小的一個;
④函數(shù)y=xf′(x)在區(qū)間(-3,-2)內(nèi)單調(diào)遞增;
⑤函數(shù)y=xf′(x)在區(qū)間$(-\frac{1}{2},3)$內(nèi)有極值點;
則上述判斷中正確的是②③⑤.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.若函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}-3x+1,x≥1}\\{(\frac{1}{2})^{x}+\frac{1}{2},x<1}\end{array}\right.$,則f(f(2))=( 。
A.1B.$\frac{3}{2}$C.$\frac{5}{2}$D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.半徑為3cm的球的體積為36πcm3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知數(shù)列{an}滿足:a1=$\frac{1}{4}$,an=$\frac{{{a_{n-1}}}}{{{{({-1})}^n}{a_{n-1}}-2}}$(n≥2,n∈N*),設(shè)bn=$\frac{1}{a_n}+{({-1})^n}$.
(1)求證:數(shù)列{bn}是等比數(shù)列,并求數(shù)列{an}的通項公式;
(2)求數(shù)列$\left\{{\frac{3n-2}{b_n}}\right\}$的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.在△ABC中,角A,B,C所對的邊分別為a,b,c,sinA,sinC,sinB成等比數(shù)列,且b=2a.
(1)求cosC的值;
(2)若△ABC的面積為2$\sqrt{7}$sinAsinB,求sinA及c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.某單位為了制定節(jié)能減排的目標(biāo),先調(diào)查了用電量y(度)與氣溫x(℃)之間的關(guān)系,隨機(jī)統(tǒng)計了某4天的用電量與當(dāng)天氣溫,并制作了對照表:
氣溫(℃)181310-1
用電量(度)24343864
由表中數(shù)據(jù),得線性回歸方程$\widehaty=-2x+\widehata$,由此估計用電量為72度時氣溫的度數(shù)約為(  )
A.-10B.-8C.-6D.-4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.在△ABC中,角A,B,C的對邊分別為a,b,c,若b=1,$\frac{1}{2}$sinB=cos(B+C)sinC,則當(dāng)B取得最大值時,△ABC的周長為2+$\sqrt{3}$.

查看答案和解析>>

同步練習(xí)冊答案