分析 (1)通過代入化簡可知bn=-2bn-1(n≥2 ),然后驗證當(dāng)n=1是否成立,進而計算可得結(jié)論;
(2)通過(1)可知$\frac{3n-2}{b_n}=\frac{3n-2}{{3×{{({-2})}^{n-1}}}}$,進而利用錯位相減法計算即得結(jié)論.
解答 (1)證明:由${a_1}=\frac{1}{4}$,${a_n}=\frac{{{a_{n-1}}}}{{{{({-1})}^n}{a_{n-1}}-2}}$ (n≥2,n∈N* ),得:
$\frac{1}{a_n}+{({-1})^n}=-2[{\frac{1}{{{a_{n-1}}}}+{{({-1})}^{n-1}}}]$,
所以bn=-2bn-1 (n≥2 ),
又${b_1}=\frac{1}{a_1}+{({-1})^1}=3≠0$,
所以$\frac{b_n}{{{b_{n-1}}}}=-2$ (n≥2 ),
所以數(shù)列{bn} 是等比數(shù)列,${b_n}=3×{({-2})^{n-1}}$ (n≥2 ),
又∵b1=3,
∴${b_n}=3×{({-2})^{n-1}}$ (n∈N* ),${a_n}=\frac{1}{{3×{{({-2})}^{n-1}}+{{({-1})}^{n-1}}}}$ (n∈N* );
(2)解:由(1)可知$\frac{3n-2}{b_n}=\frac{3n-2}{{3×{{({-2})}^{n-1}}}}$,
∴${S_n}=\frac{1}{{3×{{({-2})}^0}}}+\frac{4}{{3×{{({-2})}^1}}}+\frac{7}{{3×{{({-2})}^2}}}+…+\frac{3n-2}{{3×{{({-2})}^{n-1}}}}$,
$-\frac{1}{2}{S_n}=\frac{1}{{3×{{({-2})}^1}}}+\frac{4}{{3×{{({-2})}^2}}}+\frac{7}{{3×{{({-2})}^3}}}+…+\frac{3n-5}{{3×{{({-2})}^{n-1}}}}+\frac{3n-2}{{3×{{({-2})}^n}}}$,
兩式相減,$\frac{3}{2}{S_n}=\frac{1}{3}+\frac{1}{{{{({-2})}^1}}}+\frac{1}{{{{({-2})}^2}}}+\frac{1}{{{{({-2})}^3}}}+…+\frac{1}{{{{({-2})}^{n-1}}}}-\frac{3n-2}{{3×{{({-2})}^n}}}=-n•{({-\frac{1}{2}})^n}$,
故${S_n}=\frac{n}{3}{({-\frac{1}{2}})^{n-1}}$.
點評 本題考查數(shù)列的通項及前n項和,考查錯位相減法,注意解題方法的積累,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
上一年出險次數(shù) | 0 | 1 | 2 | 3 | 4 | 5次以上(含5次) |
下一年保費倍率 | 85% | 100% | 125% | 150% | 175% | 200% |
連續(xù)兩年沒出險打7折,連續(xù)三年沒出險打6折 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com