14.如圖所示的程序框圖,若輸入n的值為5,則輸出s的值為(  )
A.7B.8C.10D.11

分析 模擬程序框圖的運(yùn)行過(guò)程,即可得出程序運(yùn)行后輸出的s值.

解答 解:模擬程序框圖的運(yùn)行過(guò)程,如下;
輸入n=5,i=1,S=1,
滿足i≤5,s=1+0=1,i=2,
滿足i≤5,s=1+1=2,i=3,
滿足i≤5,s=2+2=4,i=4,
滿足i≤5,s=4+3=7,i=5,
滿足i≤5,s=7+4=11,i=6,
不滿足i≤5,終止循環(huán),輸出s=11.
故選:D.

點(diǎn)評(píng) 本題考查了程序框圖的應(yīng)用問(wèn)題,解題時(shí)應(yīng)模擬程序的運(yùn)行過(guò)程,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知直線l過(guò)點(diǎn)A(2,-1),傾斜角α的取值范圍是120°<α<135°,在直角坐標(biāo)系中給定兩點(diǎn)M(-2,3),N(1,$\sqrt{3}$-1),問(wèn)l與線段MN是否有交點(diǎn)?若有交點(diǎn),請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.在梯形ABCD中,AD∥BC,BC=2AD,AB=AD=$\sqrt{2}$,AB⊥BC,如圖把△ABD沿BD翻折,使得平面ABD⊥平面BCD

(1)求證:CD⊥平面ABD;
(2)若M為線段BC中點(diǎn),求三棱錐M-ACD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知首項(xiàng)為1的正項(xiàng)數(shù)列{an}滿足an+12+an2<$\frac{5}{2}{a_{n+1}}{a_n}$,n∈N*,Sn為數(shù)列{an}的前n項(xiàng)和.
(1)若a2=$\frac{3}{2}$,a3=x,a4=4,求x的取值范圍;
(2)設(shè)數(shù)列{an}是公比為q的等比數(shù)列,若$\frac{1}{2}{S_n}$<Sn+1<2Sn,n∈N*,求q的取值范圍;
(3)若a1,a2,…,ak(k≥3)成等差數(shù)列,且a1+a2+…+ak=120,求正整數(shù)k的最小值,以及k取最小值時(shí)相應(yīng)數(shù)列a1,a2,…,ak

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.若函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}-3x+1,x≥1}\\{(\frac{1}{2})^{x}+\frac{1}{2},x<1}\end{array}\right.$,則f(f(2))=( 。
A.1B.$\frac{3}{2}$C.$\frac{5}{2}$D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知數(shù)列{an}的通項(xiàng)公式為an=$\frac{3}{2n-7}$,記數(shù)列{an}的前n項(xiàng)和為Sn,則使Sn≤0成立的n的最大值為( 。
A.4B.5C.6D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知數(shù)列{an}滿足:a1=$\frac{1}{4}$,an=$\frac{{{a_{n-1}}}}{{{{({-1})}^n}{a_{n-1}}-2}}$(n≥2,n∈N*),設(shè)bn=$\frac{1}{a_n}+{({-1})^n}$.
(1)求證:數(shù)列{bn}是等比數(shù)列,并求數(shù)列{an}的通項(xiàng)公式;
(2)求數(shù)列$\left\{{\frac{3n-2}{b_n}}\right\}$的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.某種商品價(jià)格與該商品日需求量之間的幾組對(duì)照數(shù)據(jù)如表:
價(jià)格x(元/kg)1015202530
日需求量y(kg)1110865
(Ⅰ) 求y關(guān)于x的線性回歸方程;
(Ⅱ) 利用(Ⅰ)中的回歸方程,當(dāng)價(jià)格x=40元/kg時(shí),日需求量y的預(yù)測(cè)值為多少?
參考公式:線性回歸方程$\widehaty=bx+a$,其中b=$\frac{{\sum_{i=1}^n{({{x_i}-\overline x})({{y_i}-\overline y})}}}{{\sum_{i=1}^n{{{({{x_i}-\overline x})}^2}}}}$,a=$\overline y-b\overline x$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知{an}是遞增的等差數(shù)列,{bn}是等比數(shù)列,Sn是{an}的前n項(xiàng)和,a1=b1=1,S2=$\frac{12}{_{2}}$.
(1)若b2是a1,a3的等差中項(xiàng),求an與bn的通項(xiàng)公式;
(2)函數(shù)f(x)對(duì)?x∈R有f(x)+f(1-x)=2,令cn=$\frac{{a}_{n}}{2m}$,求數(shù)列{f(cm)}前m項(xiàng)的和.

查看答案和解析>>

同步練習(xí)冊(cè)答案