9.若函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}-3x+1,x≥1}\\{(\frac{1}{2})^{x}+\frac{1}{2},x<1}\end{array}\right.$,則f(f(2))=( 。
A.1B.$\frac{3}{2}$C.$\frac{5}{2}$D.5

分析 直接利用分段函數(shù)的表達式,逐步求解函數(shù)值即可.

解答 解:函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}-3x+1,x≥1}\\{(\frac{1}{2})^{x}+\frac{1}{2},x<1}\end{array}\right.$,
則f(f(2))=f(22-3×2+1)=f(-1)=$(\frac{1}{2})^{-1}+\frac{1}{2}$=$\frac{5}{2}$.
故選:C.

點評 本題考查分段函數(shù)的應用,函數(shù)值的求法,考查計算能力.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

17.求下列不等式的解集:
(1)arcsin(1-x)≤arcsin2x;           
(2)arcsin(3x-2)≤$\frac{π}{6}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.當|m|≤2時,不等式mx2-2x-m+1<0恒成立,求實數(shù)x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.從2016年1月1日起,廣東、湖北等18個保監(jiān)局所轄地區(qū)將納入商業(yè)車險改革試點范圍,其中最大的變化是上一年的出險次數(shù)決定了下一年的保費倍率,具體關系如表:
上一年出險次數(shù)012345次以上(含5次)
下一年保費倍率85%100%125%150%175%200%
連續(xù)兩年沒出險打7折,連續(xù)三年沒出險打6折
經(jīng)驗表明新車商業(yè)險保費與購車價格有較強的線性關系,下面是隨機采集的8組數(shù)據(jù)(x,y)(其中x(萬元)表示購車價格,y(元)表示商業(yè)車險保費):(8,2150)、(11,2400)、(18,3140)、(25,3750)、(25,4000)、(31,4560)、(37,5500)、(45,6500),設由著8組數(shù)據(jù)得到的回歸直線方程為:$\widehat{y}$=b$\widehat{x}$+1055.
(1)求b;
(2)廣東李先生2016年1月購買一輛價值20萬元的新車
      ①估計李先生購車時 的商業(yè)車險保費;
      ②若該車今年2月份已出過一次險,現(xiàn)在有被刮花了,李先生到汽車維修4S店詢價,預計修車費用為800元,保險專家建議李先生自費(即不出險),你認為李先生是否應該接受建議?說明理由.(假設車輛下一年與上一年都購買相同的商業(yè)車險產(chǎn)品進行續(xù)保)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.如圖,AB是圓柱的直徑且AB=2,PA是圓柱的母線且PA=2,點C是圓柱底面圓周上的點.
(1)求圓柱的側(cè)面積和體積;
(2)求三棱錐P-ABC體積的最大值;
(3)若AC=1,D是PB的中點,點E在線段PA上,求CE+ED的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.如圖所示的程序框圖,若輸入n的值為5,則輸出s的值為(  )
A.7B.8C.10D.11

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.已知二次函數(shù)y=f(x)滿足f(x)=f(4-x),且方程f(x)=0有兩個實根x1,x2,那么x1+x2=4.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.己知x,y為實數(shù),代數(shù)式$\sqrt{1+(y-2)^{2}}$+$\sqrt{9+(3-x)^{2}}$+$\sqrt{{x}^{2}+{y}^{2}}$的最小值是$\sqrt{5}$+3$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.直線l過點(1,0),且傾斜角為$\frac{5π}{6}$,則直線l的方程為( 。
A.y=-$\frac{{\sqrt{3}}}{3}$x+1B.y=$\frac{{\sqrt{3}}}{3}({x-1})$C.y=-$\frac{{\sqrt{3}}}{3}$x-1D.y=-$\frac{{\sqrt{3}}}{3}({x-1})$

查看答案和解析>>

同步練習冊答案