已知橢圓的離心率,且直線是拋物線的一條切線.
(1)求橢圓的方程;
(2)點(diǎn)P 為橢圓上一點(diǎn),直線,判斷l(xiāng)與橢圓的位置關(guān)系并給出理由;
(3)過(guò)橢圓上一點(diǎn)P作橢圓的切線交直線于點(diǎn)A,試判斷線段AP為直徑的圓是否恒過(guò)定點(diǎn),若是,求出定點(diǎn)坐標(biāo);若不是,請(qǐng)說(shuō)明理由.
(1) ;(2)相切;(3)定點(diǎn)
【解析】
試題分析:(1)利用離心率,直線是拋物線的一條切線,所以聯(lián)立方程得到,利用橢圓中,算出.求出方程.
(2)直線與橢圓方程聯(lián)立,注意用到平方相減消,得到關(guān)于的方程,求其,利用點(diǎn)在橢圓上的條件,判定直線與橢圓的位置關(guān)系;
3. 首先取兩種特殊情形:切點(diǎn)分別在短軸兩端點(diǎn)時(shí),求其切線方程,并求他們的交點(diǎn),交點(diǎn)有可能是恒過(guò)的定點(diǎn),如果是圓上恒過(guò)的定點(diǎn),如果是則需滿足,,從而判定所求交點(diǎn)是否是真正的定點(diǎn).此題屬于較難習(xí)題.
試題解析:(1)因?yàn)橹本是拋物線的一條切線,
所以,
即 2分
又,所以,
所以橢圓的方程是. 4分
(2)由
得
由①2+②得
∴直線l與橢圓相切 8分
(3)首先取兩種特殊情形:切點(diǎn)分別在短軸兩端點(diǎn)時(shí),
求得兩圓的方程為,
兩圓相交于點(diǎn)(,0),(,0),
若定點(diǎn)為橢圓的右焦點(diǎn)(.
則需證:.設(shè)點(diǎn),則橢圓過(guò)點(diǎn)P的切線方程是,
所以點(diǎn)
,
所以. 11分
若定點(diǎn)為,
則,不滿足題意.
綜上,以線段AP為直徑的圓恒過(guò)定點(diǎn)(,0). 13分
考點(diǎn):1.橢圓的性質(zhì)與方程;2.直線與圓錐曲線相交時(shí)的綜合問(wèn)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年湖北省黃岡市高三下學(xué)期三月月考文科數(shù)學(xué)試卷(解析版) 題型:填空題
若橢圓的焦點(diǎn)在x軸上,過(guò)點(diǎn)作圓的切線,切點(diǎn)分別為A,B,直線AB恰好經(jīng)過(guò)橢圓的右焦點(diǎn)和上頂點(diǎn),則橢圓方程是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年湖北省武漢市高三下學(xué)期4月調(diào)研測(cè)試文科數(shù)學(xué)試卷(解析版) 題型:選擇題
已知棱長(zhǎng)為1的正方體的俯視圖是一個(gè)面積為1的正方形,則該正方體的正視圖的面積不可能等于( )
A.1 B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年湖北省宜昌示范教學(xué)協(xié)作體高一下學(xué)期期中考試數(shù)學(xué)試卷(解析版) 題型:填空題
已知扇形的圓心角為,半徑為,則扇形的面積為_(kāi)_______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年湖北省宜昌示范教學(xué)協(xié)作體高一下學(xué)期期中考試數(shù)學(xué)試卷(解析版) 題型:選擇題
在等差數(shù)列中,若是方程的兩個(gè)根,那么的值為( )
A. B. C.12 D.6
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年湖北省天門市畢業(yè)生四月調(diào)研考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:填空題
已知直線的極坐標(biāo)方程為,則極點(diǎn)到這條直線的距離是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年湖北省天門市畢業(yè)生四月調(diào)研考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:選擇題
設(shè)平面向量,,其中記“使得成立的”為事件A,則事件A發(fā)生的概率為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年湖北省天門市畢業(yè)生四月調(diào)研考試文科數(shù)學(xué)試卷(解析版) 題型:填空題
已知圓,當(dāng)圓的面積最小時(shí),直線與圓相切,則 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年湖北省七市(州)高三年級(jí)聯(lián)合考試文科數(shù)學(xué)試卷(解析版) 題型:填空題
將長(zhǎng)度為的線段分成段,每段長(zhǎng)度均為正整數(shù),并要求這段中的任意三段都不能構(gòu)成三角形.例如,當(dāng)時(shí),只可以分為長(zhǎng)度分別為1,1,2的三段,此時(shí)的最大值為3;當(dāng)時(shí),可以分為長(zhǎng)度分別為1,2,4的三段或長(zhǎng)度分別為1,1,2,3的四段,此時(shí)的最大值為4.則:
(1)當(dāng)時(shí),的最大值為_(kāi)_______;
(2)當(dāng)時(shí),的最大值為_(kāi)_______.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com