【題目】若函數(shù)同時滿足:(1)對于定義域上的任意,恒有;(2)對于定義域上的任意,,當(dāng)時,恒有,則稱函數(shù)為“理想函數(shù)”.給出下列四個函數(shù)中:①; ②; ③;④,則被稱為“理想數(shù)”的有________(填相應(yīng)的序號).
【答案】(4)
【解析】
由“理想函數(shù)”的定義可知:若是“理想函數(shù)”,則為定義域上的單調(diào)遞減的奇函數(shù),將四個函數(shù)一一判斷即可.
若是“理想函數(shù)”,則滿足以下兩條:
①對于定義域上的任意,恒有,即,則函數(shù)是奇函數(shù);
②對于定義域上的任意,,當(dāng)時,恒有,,
時,,即函數(shù)是單調(diào)遞減函數(shù).
故為定義域上的單調(diào)遞減的奇函數(shù).
(1)在定義域上既是奇函數(shù),但不是減函數(shù),所以不是“理想函數(shù)”;
(2)在定義域上是偶函數(shù),所以不是“理想函數(shù)”;
(3)不是奇函數(shù),所以不是“理想函數(shù)”;
(4),在定義域上既是奇函數(shù),又是減函數(shù),所以是“理想函數(shù)”.
故答案為:(4)
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐中,⊥底面,是的中點(diǎn).
已知,,,.求:
(1)三棱錐PABC的體積;
(2)異面直線BC與AD所成角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知以坐標(biāo)原點(diǎn)為圓心的圓與拋物線相交于不同的兩點(diǎn), ,與拋物線的準(zhǔn)線相交于不同的兩點(diǎn), ,且.
(1)求拋物線的方程;
(2)若不經(jīng)過坐標(biāo)原點(diǎn)的直線與拋物線相交于不同的兩點(diǎn), ,且滿足.證明直線過定點(diǎn),并求出點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】汽車的“燃油效率”是指汽車每消耗1升汽油行駛的里程,下圖描述了甲、乙、丙三輛汽車在不同速度下的燃油效率情況. 下列敘述中正確的是( )
A. 消耗1升汽油,乙車最多可行駛5千米
B. 以相同速度行駛相同路程,三輛車中,甲車消耗汽油最多
C. 甲車以80千米/小時的速度行駛1小時,消耗10升汽油
D. 某城市機(jī)動車最高限速80千米/小時. 相同條件下,在該市用丙車比用乙車更省油
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在四棱錐P-ABCD中,PA⊥底面ABCD,PA=2,∠ABC=90°,,BC=1, ,∠ACD=60°,E為CD的中點(diǎn).
(1)求證:BC∥平面PAE;
(2)求點(diǎn)A到平面PCD的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某蛋糕店制作并銷售一款蛋糕,當(dāng)天每售出個獲得利潤元,未售出的每個虧損元.根據(jù)以往天的資料統(tǒng)計,得到如下需求量表.元日這天,此蛋糕店制作了這款蛋糕個.以(單位:個, )表示這天的市場需求量. (單位:元)表示這天出售這款蛋糕獲得的利潤.
需求量/個 | |||||
天數(shù) | 15 | 25 | 30 | 20 | 10 |
(1)當(dāng)時,若時獲得的利潤為, 時獲得的利潤為,試比較和的大。
(2)當(dāng)時,根據(jù)上表,從利潤不少于元的天數(shù)中,按需求量分層抽樣抽取天,
(。┣筮@天中利潤為元的天數(shù);
(ⅱ)再從這天中抽取天做進(jìn)一步分析,設(shè)這天中利潤為元的天數(shù)為,求隨機(jī)變量的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知命題α:函數(shù)的定義域是R;命題β:在R上定義運(yùn)算:xy=x(1-y).不等式(x-a)(x+a)<1對任意實數(shù)x都成立.
(1)若α、β中有且只有一個真命題,求實數(shù)a的取值范圍;
(2)若α、β中至少有一個真命題,求實數(shù)a的取值范圍;
(3)若α、β中至多有一個真命題,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某高中非畢業(yè)班學(xué)生人數(shù)分布情況如下表,為了了解這2000個學(xué)生的體重情況,從中隨機(jī)抽取160個學(xué)生并測量其體重數(shù)據(jù),根據(jù)測量數(shù)據(jù)制作了下圖所示的頻率分布直方圖.
(1)為了使抽取的160個樣品更具代表性,宜采取分層抽樣,請你給出一個你認(rèn)為合適的分層抽樣方案,并確定每層應(yīng)抽取的樣品個數(shù);
(2)根據(jù)頻率分布直方圖,求的值,并估計全體非畢業(yè)班學(xué)生中體重在內(nèi)的人數(shù);
(3)已知高一全體學(xué)生的平均體重為,高二全體學(xué)生的平均體重為,試估計全體非畢業(yè)班學(xué)生的平均體重.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若f (x)在區(qū)間(-∞,2)上為單調(diào)遞增函數(shù),求實數(shù)a的取值范圍;
(2)若a=0,x0<1,設(shè)直線y=g(x)為函數(shù)f (x)的圖象在x=x0處的切線,求證:f (x)≤g(x).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com