設(shè)
n
m
是兩個(gè)單位向量,其夾角是60°,則向量
a
=2
m
+
n
b
=2
n
-3
m
的夾角是
 
考點(diǎn):平面向量數(shù)量積的運(yùn)算
專題:平面向量及應(yīng)用
分析:根據(jù)已知條件容易求出
a
b
,|
a
|,|
b
|
,根據(jù)向量夾角的余弦公式即可求出cos<
a
,
b
>,從而求出向量
a
,
b
的夾角.
解答: 解:
a
b
=
m
n
-6
m
2
+2
n
2
=cos60°-6+2=-
7
2

|
a
|=
(2
m
+
n
)2
=
4+4×
1
2
+1
=
7
,|
b
|=
(2
n
-3
m
)2
=
4-12×
1
2
+9
=
7

∴cos
a
,
b
=
a
b
|
a
||
b
|
=-
1
2
;
a
b
夾角為120°.
故答案為:120°.
點(diǎn)評(píng):考查向量數(shù)量積的運(yùn)算,向量長(zhǎng)度求法:|
a
|=
a
2
,以及向量夾角的余弦公式.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(1)已知a,b均為實(shí)數(shù),用比較證明:
a2+b2
2
≥(
a+b
2
2(當(dāng)且僅當(dāng)a=b時(shí)等號(hào)成立);
(2)已知x>0,y>0,x+y=1,利用(1)的結(jié)論用綜合法證明:
x+
1
2
+
y+
1
2
≤2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在四棱錐C-ABEF,底面ABEF是矩形,F(xiàn)A⊥平面ABC,D是棱AB的中點(diǎn),點(diǎn)H在棱BE上,且AC=BC=
2
,AB=2,AF=3.
(1)設(shè)BH=λBE,若FH⊥平面DHC,求λ的值;
(2)在(1)的條件下,求當(dāng)λ>
1
2
時(shí),二面角D-CF-H的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知方程
x2
2-k
+
y2
k-1
=1表示的圖形是:(1)雙曲線;(2)橢圓;(3)圓.試分別求出k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某商場(chǎng)實(shí)行優(yōu)惠措施,若購(gòu)物金額x在800元以上(含800元)打8折;若購(gòu)物金額在500元以上(含500元)打9折,否則不打折.請(qǐng)?jiān)O(shè)計(jì)一個(gè)算法程序框圖,要求輸入購(gòu)物金額x,能輸出實(shí)際交款額,并寫出程序.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=xex,g(x)=ax2+x.
(1)求f(x)的單調(diào)區(qū)間;
(2)若f(x)≥g(x)在[0,+∞)上恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

橢圓G:
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦點(diǎn)為F1F2,離心率為
3
3
,連接橢圓的四個(gè)頂點(diǎn)得到的四邊形的面積為2
6
,直線l1過點(diǎn)F1且垂直于橢圓的長(zhǎng)軸,動(dòng)直線l2垂直l1于點(diǎn)P,線段PF2的垂直平分線交l2于點(diǎn)M.
(1)求橢圓G的方程;
(2)求點(diǎn)M的軌跡E的曲線方程;
(3)點(diǎn)A,B為曲線E上異于原點(diǎn)O的兩點(diǎn),OA⊥OB,
OA
+
OB
=
OC
,求四邊形AOBC的面積最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如表是某市近十年糧食的需求量的部分統(tǒng)計(jì)數(shù)據(jù):
年份20042006200820102012
年需求量(萬噸)237247257277267
(1)將表中以2008年為基準(zhǔn)進(jìn)行預(yù)處理,填完如表:
年份2008-4-20  
年需求量-257  02030
(2)利用(1)中的數(shù)據(jù)求出年需求量y與年份x之間的線性回歸方程;
(3)利用(2)所求的直線方程預(yù)測(cè)該市2014年的糧食需求量.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=5-
6
x
,則f(x)在x∈(0,+∞)是
 
(增函數(shù),減函數(shù))若f(x)在[a,b](0<a<b)的值域是[a,b],則a=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案