【題目】某教師為了分析所任教班級(jí)某次考試的成績(jī),將全班同學(xué)的成績(jī)作成統(tǒng)計(jì)表和頻率分布直方圖如下:

分組

頻數(shù)

頻率

[50,60)

3

0.06

[60,70)

m

0.10

[70,80)

13

n

[80,90)

p

q

[90,100]

9

0.18

總計(jì)

t

1

(1)求表中t,q及圖中a的值;

(2)該教師從這次考試成績(jī)低于70分的學(xué)生中隨機(jī)抽取3人進(jìn)行談話,設(shè)X表示所抽取學(xué)生中成績(jī)低于60分的人數(shù),求隨機(jī)變量X的分布列和數(shù)學(xué)期望.

【答案】(1)t=50,q=0.4,a=0.026 (2)詳見(jiàn)解析

【解析】

(1)利用頻率計(jì)算公式、頻率分布直方圖的性質(zhì)即可得出;

(2)由表格可知:區(qū)間[50,60)中有3人,區(qū)間[60,70)中有5人.由題意可得:X=0,1,2,3.則PXk,即可得出隨機(jī)變量X的分布列和數(shù)學(xué)期望

解:(1)由表格可知,全班總?cè)藬?shù)t=50,則m=50×0.10=5,n=0.26,所以a=0.026,3+5+13+9+p=50,

p=20,所以q=0.4.

(2)成績(jī)?cè)赱50,60)內(nèi)的有3人,[60,70)內(nèi)的有5人.

由題意得X可能的取值為0,1,2,3,P(Xk)=,所以P(X=0)=P(X=1)=,P(X=2)=,P(X=3)=.

隨機(jī)變量X的分布列如下:

X

0

1

2

3

P

數(shù)學(xué)期望EX=0×+1×+2×+3×.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于函數(shù)y=f(x),xD,若存在閉區(qū)間[ab]和常數(shù)C,使得對(duì)任意x[ab]都有f(x)=C,稱f(x)橋函數(shù)”.

1)作出函數(shù)的圖象,并說(shuō)明f(x)是否為橋函數(shù)?(不必證明)

2)設(shè)f(x)定義域?yàn)?/span>R,判斷f(x)為奇函數(shù)橋函數(shù)’”的什么條件?給出你的結(jié)論并說(shuō)明理由;

3)若函數(shù)橋函數(shù),求常數(shù)mn的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】“割圓術(shù)”是劉徽最突出的數(shù)學(xué)成就之一,他在《九章算術(shù)注》中提出割圓術(shù),并作為計(jì)算圓的周長(zhǎng),面積已經(jīng)圓周率的基礎(chǔ),劉徽把圓內(nèi)接正多邊形的面積一直算到了正3072邊形,并由此而求得了圓周率為3.1415和3.1416這兩個(gè)近似數(shù)值,這個(gè)結(jié)果是當(dāng)時(shí)世界上圓周率計(jì)算的最精確數(shù)據(jù).如圖,當(dāng)分割到圓內(nèi)接正六邊形時(shí),某同學(xué)利用計(jì)算機(jī)隨機(jī)模擬法向圓內(nèi)隨機(jī)投擲點(diǎn),計(jì)算得出該點(diǎn)落在正六邊形內(nèi)的頻率為0.8269,那么通過(guò)該實(shí)驗(yàn)計(jì)算出來(lái)的圓周率近似值為(參考數(shù)據(jù):

A. 3.1419B. 3.1417C. 3.1415D. 3.1413

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的一個(gè)焦點(diǎn)為,離心率,左,右頂點(diǎn)分別為A,B,經(jīng)過(guò)點(diǎn)F的直線與橢圓交于C,D兩點(diǎn)(與AB不重合).

(1)求橢圓M的方程;

(2)的面積分別為,求|的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2018湖北七市(州)教研協(xié)作體3月高三聯(lián)考已知橢圓 的左頂點(diǎn)為,上頂點(diǎn)為,直線與直線垂直,垂足為點(diǎn),且點(diǎn)是線段的中點(diǎn).

I)求橢圓的方程;

II)如圖,若直線 與橢圓交于, 兩點(diǎn),點(diǎn)在橢圓上,且四邊形為平行四邊形,求證:四邊形的面積為定值.

【答案】I;(II

【解析】試題分析:(1)根據(jù)題意可得, 故斜率為由直線與直線垂直,可得,因?yàn)辄c(diǎn)是線段的中點(diǎn),∴點(diǎn)的坐標(biāo)是,

代入直線得連立方程即可得, ;(2)∵四邊形為平行四邊形,∴,設(shè), ,∴ ,得,將點(diǎn)坐標(biāo)代入橢圓方程得,

點(diǎn)到直線的距離為,利用弦長(zhǎng)公式得EF,則平行四邊形的面積為

.

解析:(1)由題意知,橢圓的左頂點(diǎn),上頂點(diǎn),直線的斜率

因?yàn)辄c(diǎn)是線段的中點(diǎn),∴點(diǎn)的坐標(biāo)是,

由點(diǎn)在直線上,∴,且,

解得, ,

∴橢圓的方程為.

(2)設(shè), ,

代入消去并整理得 ,

,

∵四邊形為平行四邊形,∴ ,

,將點(diǎn)坐標(biāo)代入橢圓方程得,

點(diǎn)到直線的距離為, ,

∴平行四邊形的面積為

.

故平行四邊形的面積為定值.

型】解答
結(jié)束】
21

【題目】已知函數(shù) .

(1)當(dāng)時(shí),討論函數(shù)的單調(diào)性;

(2)當(dāng)時(shí),求證:函數(shù)有兩個(gè)不相等的零點(diǎn), ,且.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知正方體的棱長(zhǎng)為2,為體對(duì)角線上的一點(diǎn),且,現(xiàn)有以下判斷:①;②若平面,則;③周長(zhǎng)的最小值是;④若為鈍角三角形,則的取值范圍為,其中正確判斷的序號(hào)為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在直角梯形ABCD中,E,F分別為AB的三等分點(diǎn),,若沿著FGED折疊使得點(diǎn)AB重合,如圖2所示,連結(jié)GC,BD.

(1)求證:平面平面;

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

1)討論函數(shù)的單調(diào)性;

2)對(duì)任意的,恒成立,請(qǐng)求出的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于函數(shù),設(shè),若對(duì)所有的都有,則稱互為零點(diǎn)相鄰函數(shù)”.若函數(shù)互為零點(diǎn)相鄰函數(shù),則實(shí)數(shù)a的取值范圍是______.

查看答案和解析>>

同步練習(xí)冊(cè)答案