7.已知拋物線的頂點(diǎn)在原點(diǎn),準(zhǔn)線方程是y=4,則該拋物線的標(biāo)準(zhǔn)方程為( 。
A.x2=16yB.y2=-16xC.y2=16xD.x2=-16y

分析 根據(jù)準(zhǔn)線方程為y=4,可知拋物線的焦點(diǎn)在y軸的負(fù)半軸,再設(shè)拋物線的標(biāo)準(zhǔn)形式為x2=-2py,根據(jù)準(zhǔn)線方程求出p的值,代入即可得到答案.

解答 解:由題意可知拋物線的焦點(diǎn)在y軸的負(fù)半軸,
設(shè)拋物線標(biāo)準(zhǔn)方程為:x2=2-py(p>0),
∵拋物線的準(zhǔn)線方程為y=4,
∴$\frac{p}{2}$=4,
∴p=8,
∴拋物線的標(biāo)準(zhǔn)方程為:x2=-16y.
故選:D.

點(diǎn)評 本題主要考查拋物線的標(biāo)準(zhǔn)方程、拋物線的簡單性質(zhì).屬基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知f(x)=$\frac{3}{x+1}$.各項(xiàng)均為正數(shù)的數(shù)列{an}滿足a1=1,an+2=f(an).若a2016=a2018,則a9+a10的值是$\frac{10}{13}+\frac{{\sqrt{13}}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知正四棱錐P-ABCD的側(cè)棱與底面所成角為60°,各頂點(diǎn)都在球O的球面上,且AB=$\sqrt{6}$,則球O的表面積為( 。
A.16πB.12πC.$\frac{32}{3}$πD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知二次函數(shù)y=x2-(m+2)x-3m+6的圖象過原點(diǎn).
(1)求二次函數(shù)的解析式;
(2)寫出二次函數(shù)圖象的頂點(diǎn)坐標(biāo)和對稱軸方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖,直角梯形CD=4,AB=7,AD=4,以AB為旋轉(zhuǎn)軸,旋轉(zhuǎn)一周形成一個幾何體.求這個幾何體的表面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.設(shè)函數(shù)f(x)=$\frac{1}{3}{x^3}$-bx+c(b,c∈R).
(1)若f(x)在點(diǎn)(1,f(1))處的切線方程為y=2x+1,求b,c的值;
(2)若b=1,c=$\frac{1}{3}$,求證:f(x)在區(qū)間(1,2)內(nèi)存在唯一零點(diǎn);
(3)若c=0,求f(x)在區(qū)間[0,1]上的最大值g(b).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.集合A={x|-2<x<4},集合B={x|2m-1<x<m+3}
(1)全集U={x|x≤4},當(dāng)m=-1時,求(∁UA)∪B和A∩(∁UB);
(2)若A∪B=A,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知函數(shù)f(x)=|log2|x-3||,且關(guān)于x的方程[f(x)]2+af(x)+b=0有6個不同的實(shí)數(shù)解,若最小實(shí)數(shù)解為-5,則a+b的值為( 。
A.-3B.-2C.0D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知直線l1的方程為mx+2y-1=0,直線l2的方程為mx+(m-4)y+5=0,
(1)若l1⊥l2,求實(shí)數(shù)m的值;
(2)若l1∥l2,求實(shí)數(shù)m的值.

查看答案和解析>>

同步練習(xí)冊答案