5.△ABC的內(nèi)角A,B,C的對邊分別為a,b,c.已知$a=\sqrt{3},b=2$,A=60°,則c=(  )
A.$\frac{1}{2}$B.1C.$\sqrt{3}$D.2

分析 由已知利用余弦定理即可計算得解.

解答 解:∵$a=\sqrt{3},b=2$,A=60°,
∴由余弦定理a2=b2+c2-2bccosA,可得:3=4+c2-2×$2×c×\frac{1}{2}$,整理可得:c2-2c+1=0,
∴解得:c=1.
故選:B.

點評 本題主要考查了余弦定理在解三角形中的應(yīng)用,考查了轉(zhuǎn)化思想,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.當(dāng)x>0時,f(x)=$\frac{12}{x}$+4x的最小值為( 。
A.8$\sqrt{3}$B.8C.16D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.對變量x,y有觀測數(shù)據(jù)(xi,yi)(i=1,2,…,10),得散點圖(1);對變量u,v,有觀測數(shù)據(jù)(ui,vi)(i=1,2,…,10),得散點圖(2),由這兩個散點圖可以判斷( 。
A.變量x與y正相關(guān),u與v正相關(guān)B.變量x與y正相關(guān),u與v負(fù)相關(guān)
C.變量x與y負(fù)相關(guān),u與v正相關(guān)D.變量x與y負(fù)相關(guān),u與v負(fù)相關(guān)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.命題:“?x∈R,x2-ax+1<0”的否定為?x∈R,x2-ax+1≥0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)$f(x)={e^x}-\frac{1}{2}a{x^2}$(x>0,e為自然對數(shù)的底數(shù)),f'(x)是f(x)的導(dǎo)函數(shù).
(Ⅰ)當(dāng)a=2時,求證f(x)>1;
(Ⅱ)是否存在正整數(shù)a,使得f'(x)≥x2lnx對一切x>0恒成立?若存在,求出a的最大值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知函數(shù)f(x)是定義在實數(shù)集R上的奇函數(shù),若x>0時,f(x)=x•ex,則不等式f(x)>3x的解集為( 。
A.{x|-ln3<x<ln3}B.{x|x<-ln3,或x>ln3}
C.{x|-ln3<x<0,或x>ln3}D.{x|x<-ln3,或0<x<ln3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知數(shù)列{an}的前n項和為Sn.,且${S_n}={n^2}-2n$.
(Ⅰ)求{an}通項公式;
(Ⅱ)設(shè)${b_n}=n•{2^{{a_n}+1}}$,求數(shù)列{bn}前n項的和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.設(shè)i是虛數(shù)單位,復(fù)數(shù)i(1+ai)為純虛數(shù),則實數(shù)a為( 。
A.-1B.0C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知直線l:y=k(x+$\sqrt{3}$)和圓C:x2+(y-1)2=1,若直線l與圓C相切,則k=( 。
A.0B.$\sqrt{3}$C.$\frac{\sqrt{3}}{3}$或0D.$\sqrt{3}$或0

查看答案和解析>>

同步練習(xí)冊答案