【題目】某市為了了解民眾對(duì)開展創(chuàng)建文明城市工作以來的滿意度,隨機(jī)調(diào)查了40名群眾,并將他們隨機(jī)分成A,B兩組,每組20人,A組群眾給第一階段的創(chuàng)文工作評(píng)分,B組群眾給第二階段的創(chuàng)文工作評(píng)分,根據(jù)兩組群眾的評(píng)分繪制了如下莖葉圖:
根據(jù)莖葉圖比較群眾對(duì)兩個(gè)階段創(chuàng)文工作滿意度評(píng)分的平均值及集中程度不要求計(jì)算出具體值,給出結(jié)論即可;
根據(jù)群眾的評(píng)分將滿意度從低到高分為三個(gè)等級(jí):
滿意度評(píng)分 | 低于70分 | 70分到89分 | 不低于90分 |
滿意度等級(jí) | 不滿意 | 滿意 | 非常滿意 |
假設(shè)兩組群眾的評(píng)價(jià)結(jié)果相互獨(dú)立,由頻率估計(jì)概率,求創(chuàng)文工作第二階段的民眾滿意度等級(jí)高于第一階段的概率;
從這40名群眾中隨機(jī)抽取2人,記X表示滿意度等級(jí)為“非常滿意”的群眾人數(shù),求X的分布列與數(shù)學(xué)期望.
【答案】(1)見解析;(2); 見解析.
【解析】
通過莖葉圖可以看出:B組群眾給第二階段創(chuàng)文工作滿意度評(píng)分相對(duì)集中在峰值的隨近,由此得到B組級(jí)第二階段創(chuàng)文工作滿意度評(píng)分的平均分高于A組群眾給第一階段創(chuàng)文工作滿意度評(píng)分的平均值,給分相對(duì)A組更集中穩(wěn)定.
記表示事件“第一階段創(chuàng)文工作滿意度等級(jí)為不滿意”,表示事件“第一階段創(chuàng)文工作滿意度等級(jí)為滿意”,表示事件“第二階段創(chuàng)文工作滿意度等級(jí)為滿意或非常滿意”,表示事件“第二階段創(chuàng)文工作滿意度等級(jí)為非常滿意”,則由頻率估計(jì)概率,得:,,,,設(shè)創(chuàng)文工作第二階段的民眾滿意度等級(jí)高于第一階段為事件A,由事件的相互獨(dú)立性,能求出創(chuàng)文工作第二階段的民眾滿意度等級(jí)高于第一階段的概率由已知在被隨機(jī)調(diào)查的40名群眾中,創(chuàng)文工作滿意度為“非常滿意”的人數(shù)為8人,其他等級(jí)為32人,則從中隨機(jī)抽取2人,,1,2,分別求出相應(yīng)的概率,由此能求出X的分布列和.
通過莖葉圖可以看出:B組群眾給第二階段創(chuàng)文工作滿意度評(píng)分的“葉”分布在“莖”的7,8,9上,也相對(duì)集中在峰值的隨近,
故B組級(jí)第二階段創(chuàng)文工作滿意度評(píng)分的平均分高于A組群眾給第一階段創(chuàng)文工作滿意度評(píng)分的平均值,
給分相對(duì)A組更集中穩(wěn)定.
記表示事件“第一階段創(chuàng)文工作滿意度等級(jí)為不滿意”,
表示事件“第一階段創(chuàng)文工作滿意度等級(jí)為滿意”,
表示事件“第二階段創(chuàng)文工作滿意度等級(jí)為滿意或非常滿意”,
表示事件“第二階段創(chuàng)文工作滿意度等級(jí)為非常滿意”,
則由頻率估計(jì)概率,得:,,,,
設(shè)創(chuàng)文工作第二階段的民眾滿意度等級(jí)高于第一階段為事件A,
由事件的相互獨(dú)立性,得創(chuàng)文工作第二階段的民眾滿意度等級(jí)高于第一階段的概率:
.
由已知在被隨機(jī)調(diào)查的40名群眾中,創(chuàng)文工作滿意度為“非常滿意”的人數(shù)為8人,
其他等級(jí)為32人,則從中隨機(jī)抽取2人,,1,2,
,
,
,
的分布列為:
X | 0 | 1 | 2 |
P |
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】【2018湖南(長(zhǎng)郡中學(xué)、株洲市第二中學(xué))、江西(九江一中)等十四校高三第一次聯(lián)考】已知函數(shù)(其中且為常數(shù), 為自然對(duì)數(shù)的底數(shù), ).
(Ⅰ)若函數(shù)的極值點(diǎn)只有一個(gè),求實(shí)數(shù)的取值范圍;
(Ⅱ)當(dāng)時(shí),若(其中)恒成立,求的最小值的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ln(2+ax)(a>0),(b∈R).
(1)若函數(shù)f(x)的圖象在點(diǎn)(3,f(3))處的切線與函數(shù)g(x)的圖象在點(diǎn)(1,g(1))處的切線平行,求a,b之間的關(guān)系;
(2)在(1)的條件下,若b=a,且f(x)≥mg(x)對(duì)任意x∈[,+∞)恒成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)).是曲線上的動(dòng)點(diǎn),將線段繞點(diǎn)順時(shí)針旋轉(zhuǎn)得到線段,設(shè)點(diǎn)的軌跡為曲線.以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系.
(I)求曲線,的極坐標(biāo)方程;
(II)在(I)的條件下,若射線與曲線,分別交于兩點(diǎn)(除極點(diǎn)外),且有定點(diǎn),求面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) (為常數(shù))
(Ⅰ)若是定義域上的單調(diào)函數(shù),求的取值范圍;
(Ⅱ)若存在兩個(gè)極值點(diǎn),且,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)工廠在某年連續(xù)10個(gè)月每月產(chǎn)品的總成本y(萬元)與該月產(chǎn)量x(萬件)之間有如下一組數(shù)據(jù):
x | 1.08 | 1.12 | 1.19 | 1.28 | 1.36 | 1.48 | 1.59 | 1.68 | 1.80 | 1.87 |
y | 2.25 | 2.37 | 2.40 | 2.55 | 2.64 | 2.75 | 2.92 | 3.03 | 3.14 | 3.26 |
(1)通過畫散點(diǎn)圖,發(fā)現(xiàn)可用線性回歸模型擬合y與x的關(guān)系,請(qǐng)用相關(guān)系數(shù)加以說明;
(2)①建立月總成本y與月產(chǎn)量x之間的回歸方程;
②通過建立的y關(guān)于x的回歸方程,估計(jì)某月產(chǎn)量為1.98萬件時(shí),此時(shí)產(chǎn)品的總成本為多少萬元?
(均精確到0.001)
附注:①參考數(shù)據(jù):,
,
②參考公式:相關(guān)系數(shù),
回歸方程中斜率和截距的最小二乘估計(jì)公式分別為:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】小王、小李在兩次數(shù)學(xué)考試中答對(duì)題數(shù)如下表表示:
題型 答對(duì) 題數(shù) 姓名 | 期中考試 | 期末考試 | ||||
填空題 (每題3分) | 選擇題 每題3分) | 解答題 (每題8分) | 填空題 (每題3分) | 選擇題 每題3分) | 解答題 (每題8分) | |
小王 | 10 | 3 | 2 | 11 | 4 | 4 |
小李 | 9 | 5 | 3 | 7 | 3 | 3 |
(1)用矩陣表示小王和小李期中考試答對(duì)題數(shù)、期末考試答對(duì)題數(shù)、每種題型的分值;
(2)用矩陣運(yùn)算表示他們?cè)趦纱慰荚囍懈黝}型答對(duì)題總數(shù);
(3)用矩陣計(jì)算小王、小李兩次考試各題型平均答對(duì)題數(shù);
(4)用矩陣計(jì)算他們期中、期末的成績(jī);
(5)如果期中考試成績(jī)占40%,期末考試成績(jī)占60%,用矩陣求兩同學(xué)的總評(píng)成績(jī).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中為常數(shù).
若曲線在處的切線在兩坐標(biāo)軸上的截距相等,求的值;
若對(duì),都有,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,直線l的參數(shù)方程為(t為參數(shù),0).以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為.
(Ⅰ)寫出曲線C的直角坐標(biāo)方程;
(Ⅱ)若直線l與曲線C交于A,B兩點(diǎn),且AB的長(zhǎng)度為2,求直線l的普通方程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com