11.比較大。簊in 1<sin$\frac{π}{3}$(填“>”或“<”).

分析 利用正弦函數(shù)的單調(diào)性,判斷求解即可.

解答 解:因?yàn)?$<\frac{π}{3}$,x∈(0,$\frac{π}{2}$)時(shí),y=sinx是增函數(shù),
所以sin 1<sin$\frac{π}{3}$
故答案為:<.

點(diǎn)評 本題考查正弦函數(shù)的單調(diào)性的應(yīng)用,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.圓ρ=r與圓ρ=-2rsin(θ+$\frac{π}{4}$)(r>0)的公共弦所在直線的方程為$\sqrt{2}$ρ(sinθ+cosθ)=-r.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知數(shù)列{an}的通項(xiàng)為an=$\frac{4}{11-2n}$,則滿足an+1<an的n的最大值為( 。
A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.在直角坐標(biāo)系xOy中,圓C的參數(shù)方程為$\left\{\begin{array}{l}x=3+2cosθ\\ y=-4+2sinθ\end{array}\right.$(θ為參數(shù)).
(1)以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,求圓C的極坐標(biāo)方程;
(2)已知A(2,0),B(0,2),圓C上任意一點(diǎn)M(x,y),求△ABM面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,且滿足S17>0,S18<0,則$\frac{{S}_{1}}{{a}_{1}}$,$\frac{{S}_{2}}{{a}_{2}}$,…,$\frac{{S}_{15}}{{a}_{15}}$中最大的項(xiàng)為( 。
A.$\frac{{S}_{7}}{{a}_{7}}$B.$\frac{{S}_{8}}{{a}_{8}}$C.$\frac{{S}_{9}}{{a}_{9}}$D.$\frac{{S}_{10}}{{a}_{10}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.復(fù)數(shù)z=m2+2m+(m2+3m+2)i是純虛數(shù),則實(shí)數(shù)m的值是( 。
A.0B.-2C.0或-2D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.某班有男生30人,女生20人,按分層抽樣方法從班級中選出5人負(fù)責(zé)校園開放日的接待工作.現(xiàn)從這5人中隨機(jī)選取2人,至少有1名男生的概率是( 。
A.$\frac{1}{10}$B.$\frac{3}{10}$C.$\frac{7}{10}$D.$\frac{9}{10}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.$cos(\frac{π}{2}-α)$=( 。
A.cosαB.sinαC.tanαD.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.某學(xué)校高一、高二、高三年級的學(xué)生人數(shù)分別為200,300,500,現(xiàn)用分層抽樣的方法從該校高中三個(gè)年級的學(xué)生中抽取容量為150的樣本,則應(yīng)從高二年級抽取45名學(xué)生.

查看答案和解析>>

同步練習(xí)冊答案